1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Names
open CErrors
open Util
open Cic
open Term
open Closure
open Esubst
open Environ
let rec is_empty_stack = function
[] -> true
| Zupdate _::s -> is_empty_stack s
| Zshift _::s -> is_empty_stack s
| _ -> false
(* Compute the lift to be performed on a term placed in a given stack *)
let el_stack el stk =
let n =
List.fold_left
(fun i z ->
match z with
Zshift n -> i+n
| _ -> i)
0
stk in
el_shft n el
let compare_stack_shape stk1 stk2 =
let rec compare_rec bal stk1 stk2 =
match (stk1,stk2) with
([],[]) -> bal=0
| ((Zupdate _|Zshift _)::s1, _) -> compare_rec bal s1 stk2
| (_, (Zupdate _|Zshift _)::s2) -> compare_rec bal stk1 s2
| (Zapp l1::s1, _) -> compare_rec (bal+Array.length l1) s1 stk2
| (_, Zapp l2::s2) -> compare_rec (bal-Array.length l2) stk1 s2
| (Zproj (n1,m1,p1)::s1, Zproj (n2,m2,p2)::s2) ->
Int.equal bal 0 && compare_rec 0 s1 s2
| ((ZcaseT(c1,_,_,_))::s1,
(ZcaseT(c2,_,_,_))::s2) ->
bal=0 (* && c1.ci_ind = c2.ci_ind *) && compare_rec 0 s1 s2
| (Zfix(_,a1)::s1, Zfix(_,a2)::s2) ->
bal=0 && compare_rec 0 a1 a2 && compare_rec 0 s1 s2
| (_,_) -> false in
compare_rec 0 stk1 stk2
type lft_constr_stack_elt =
Zlapp of (lift * fconstr) array
| Zlproj of Names.Projection.t * lift
| Zlfix of (lift * fconstr) * lft_constr_stack
| Zlcase of case_info * lift * fconstr * fconstr array
and lft_constr_stack = lft_constr_stack_elt list
let rec zlapp v = function
Zlapp v2 :: s -> zlapp (Array.append v v2) s
| s -> Zlapp v :: s
let pure_stack lfts stk =
let rec pure_rec lfts stk =
match stk with
[] -> (lfts,[])
| zi::s ->
(match (zi,pure_rec lfts s) with
(Zupdate _,lpstk) -> lpstk
| (Zshift n,(l,pstk)) -> (el_shft n l, pstk)
| (Zapp a, (l,pstk)) ->
(l,zlapp (Array.map (fun t -> (l,t)) a) pstk)
| (Zproj (n,m,c), (l,pstk)) ->
(l, Zlproj (c,l)::pstk)
| (Zfix(fx,a),(l,pstk)) ->
let (lfx,pa) = pure_rec l a in
(l, Zlfix((lfx,fx),pa)::pstk)
| (ZcaseT(ci,p,br,env),(l,pstk)) ->
(l,Zlcase(ci,l,mk_clos env p,mk_clos_vect env br)::pstk)
) in
snd (pure_rec lfts stk)
(****************************************************************************)
(* Reduction Functions *)
(****************************************************************************)
let whd_betaiotazeta x =
match x with
| (Sort _|Var _|Meta _|Evar _|Const _|Ind _|Construct _|
Prod _|Lambda _|Fix _|CoFix _) -> x
| _ -> whd_val (create_clos_infos betaiotazeta empty_env) (inject x)
let whd_all env t =
match t with
| (Sort _|Meta _|Evar _|Ind _|Construct _|
Prod _|Lambda _|Fix _|CoFix _) -> t
| _ -> whd_val (create_clos_infos betadeltaiota env) (inject t)
let whd_allnolet env t =
match t with
| (Sort _|Meta _|Evar _|Ind _|Construct _|
Prod _|Lambda _|Fix _|CoFix _|LetIn _) -> t
| _ -> whd_val (create_clos_infos betadeltaiotanolet env) (inject t)
(* Beta *)
let beta_appvect c v =
let rec stacklam env t stack =
match t, stack with
Lambda(_,_,c), arg::stacktl -> stacklam (arg::env) c stacktl
| _ -> applist (substl env t, stack) in
stacklam [] c (Array.to_list v)
(********************************************************************)
(* Conversion *)
(********************************************************************)
type conv_pb =
| CONV
| CUMUL
(* Conversion utility functions *)
type 'a conversion_function = env -> 'a -> 'a -> unit
exception NotConvertible
exception NotConvertibleVect of int
let convert_universes univ u u' =
if Univ.Instance.check_eq univ u u' then ()
else raise NotConvertible
let compare_stacks f fmind lft1 stk1 lft2 stk2 =
let rec cmp_rec pstk1 pstk2 =
match (pstk1,pstk2) with
| (z1::s1, z2::s2) ->
cmp_rec s1 s2;
(match (z1,z2) with
| (Zlapp a1,Zlapp a2) -> Array.iter2 f a1 a2
| (Zlfix(fx1,a1),Zlfix(fx2,a2)) ->
f fx1 fx2; cmp_rec a1 a2
| (Zlproj (c1,l1),Zlproj (c2,l2)) ->
if not (Names.Constant.UserOrd.equal
(Names.Projection.constant c1)
(Names.Projection.constant c2)) then
raise NotConvertible
| (Zlcase(ci1,l1,p1,br1),Zlcase(ci2,l2,p2,br2)) ->
if not (fmind ci1.ci_ind ci2.ci_ind) then
raise NotConvertible;
f (l1,p1) (l2,p2);
Array.iter2 (fun c1 c2 -> f (l1,c1) (l2,c2)) br1 br2
| _ -> assert false)
| _ -> () in
if compare_stack_shape stk1 stk2 then
cmp_rec (pure_stack lft1 stk1) (pure_stack lft2 stk2)
else raise NotConvertible
let convert_inductive_instances cv_pb cumi u u' univs =
let len_instance =
Univ.AUContext.size (Univ.ACumulativityInfo.univ_context cumi) in
if not ((len_instance = Univ.Instance.length u) &&
(len_instance = Univ.Instance.length u')) then
anomaly (Pp.str "Invalid inductive subtyping encountered!")
else
let variance = Univ.ACumulativityInfo.variance cumi in
let comp_cst =
match cv_pb with
| CONV ->
Univ.Variance.eq_constraints variance u u' Univ.Constraint.empty
| CUMUL ->
Univ.Variance.leq_constraints variance u u' Univ.Constraint.empty
in
if (Univ.check_constraints comp_cst univs) then () else raise NotConvertible
let convert_inductives
cv_pb (mind, ind) u1 sv1 u2 sv2 univs =
match mind.mind_universes with
| Monomorphic_ind _ | Polymorphic_ind _ -> convert_universes univs u1 u2
| Cumulative_ind cumi ->
let num_param_arity =
mind.mind_nparams + mind.mind_packets.(ind).mind_nrealargs
in
if not (num_param_arity = sv1 && num_param_arity = sv2) then
convert_universes univs u1 u2
else
convert_inductive_instances cv_pb cumi u1 u2 univs
let convert_constructors
(mind, ind, cns) u1 sv1 u2 sv2 univs =
match mind.mind_universes with
| Monomorphic_ind _ | Polymorphic_ind _ -> convert_universes univs u1 u2
| Cumulative_ind cumi ->
let num_cnstr_args =
let nparamsctxt =
mind.mind_nparams + mind.mind_packets.(ind).mind_nrealargs
in
nparamsctxt + mind.mind_packets.(ind).mind_consnrealargs.(cns - 1)
in
if not (num_cnstr_args = sv1 && num_cnstr_args = sv2) then
convert_universes univs u1 u2
else
(** By invariant, both constructors have a common supertype,
so they are convertible _at that type_. *)
()
(* Convertibility of sorts *)
let sort_cmp env univ pb s0 s1 =
match (s0,s1) with
| (Prop c1, Prop c2) when pb = CUMUL -> if c1 = Pos && c2 = Null then raise NotConvertible
| (Prop c1, Prop c2) -> if c1 <> c2 then raise NotConvertible
| (Prop c1, Type u) ->
(match pb with
CUMUL -> ()
| _ -> raise NotConvertible)
| (Type u1, Type u2) ->
(** FIXME: handle type-in-type option here *)
if (* snd (engagement env) == StratifiedType && *)
not
(match pb with
| CONV -> Univ.check_eq univ u1 u2
| CUMUL -> Univ.check_leq univ u1 u2)
then begin
if !Flags.debug then begin
let op = match pb with CONV -> "=" | CUMUL -> "<=" in
Format.eprintf "sort_cmp: @[%a@]\n%!" Pp.pp_with Pp.(
str"Error: " ++ Univ.pr_uni u1 ++ str op ++ Univ.pr_uni u2 ++ str ":" ++ cut()
++ Univ.pr_universes univ)
end;
raise NotConvertible
end
| (_, _) -> raise NotConvertible
let rec no_arg_available = function
| [] -> true
| Zupdate _ :: stk -> no_arg_available stk
| Zshift _ :: stk -> no_arg_available stk
| Zapp v :: stk -> Array.length v = 0 && no_arg_available stk
| Zproj _ :: _ -> true
| ZcaseT _ :: _ -> true
| Zfix _ :: _ -> true
let rec no_nth_arg_available n = function
| [] -> true
| Zupdate _ :: stk -> no_nth_arg_available n stk
| Zshift _ :: stk -> no_nth_arg_available n stk
| Zapp v :: stk ->
let k = Array.length v in
if n >= k then no_nth_arg_available (n-k) stk
else false
| Zproj _ :: _ -> true
| ZcaseT _ :: _ -> true
| Zfix _ :: _ -> true
let rec no_case_available = function
| [] -> true
| Zupdate _ :: stk -> no_case_available stk
| Zshift _ :: stk -> no_case_available stk
| Zapp _ :: stk -> no_case_available stk
| Zproj (_,_,_) :: _ -> false
| ZcaseT _ :: _ -> false
| Zfix _ :: _ -> true
let in_whnf (t,stk) =
match fterm_of t with
| (FLetIn _ | FCaseT _ | FApp _ | FCLOS _ | FLIFT _ | FCast _) -> false
| FLambda _ -> no_arg_available stk
| FConstruct _ -> no_case_available stk
| FCoFix _ -> no_case_available stk
| FFix(((ri,n),(_,_,_)),_) -> no_nth_arg_available ri.(n) stk
| (FFlex _ | FProd _ | FEvar _ | FInd _ | FAtom _ | FRel _ | FProj _) -> true
| FLOCKED -> assert false
let default_level = Level 0
let get_strategy { var_opacity; cst_opacity } = function
| VarKey id ->
(try Names.Id.Map.find id var_opacity
with Not_found -> default_level)
| ConstKey (c, _) ->
(try Names.Cmap.find c cst_opacity
with Not_found -> default_level)
| RelKey _ -> Expand
let oracle_order infos l2r k1 k2 =
let o = Closure.oracle_of_infos infos in
match get_strategy o k1, get_strategy o k2 with
| Expand, Expand -> l2r
| Expand, (Opaque | Level _) -> true
| (Opaque | Level _), Expand -> false
| Opaque, Opaque -> l2r
| Level _, Opaque -> true
| Opaque, Level _ -> false
| Level n1, Level n2 ->
if Int.equal n1 n2 then l2r
else n1 < n2
let eq_table_key univ =
Names.eq_table_key (fun (c1,u1) (c2,u2) ->
Constant.UserOrd.equal c1 c2 &&
Univ.Instance.check_eq univ u1 u2)
(* Conversion between [lft1]term1 and [lft2]term2 *)
let rec ccnv univ cv_pb infos lft1 lft2 term1 term2 =
eqappr univ cv_pb infos (lft1, (term1,[])) (lft2, (term2,[]))
(* Conversion between [lft1](hd1 v1) and [lft2](hd2 v2) *)
and eqappr univ cv_pb infos (lft1,st1) (lft2,st2) =
Control.check_for_interrupt ();
(* First head reduce both terms *)
let rec whd_both (t1,stk1) (t2,stk2) =
let st1' = whd_stack infos t1 stk1 in
let st2' = whd_stack infos t2 stk2 in
(* Now, whd_stack on term2 might have modified st1 (due to sharing),
and st1 might not be in whnf anymore. If so, we iterate ccnv. *)
if in_whnf st1' then (st1',st2') else whd_both st1' st2' in
let ((hd1,v1),(hd2,v2)) = whd_both st1 st2 in
let appr1 = (lft1,(hd1,v1)) and appr2 = (lft2,(hd2,v2)) in
(* compute the lifts that apply to the head of the term (hd1 and hd2) *)
let el1 = el_stack lft1 v1 in
let el2 = el_stack lft2 v2 in
match (fterm_of hd1, fterm_of hd2) with
(* case of leaves *)
| (FAtom a1, FAtom a2) ->
(match a1, a2 with
| (Sort s1, Sort s2) ->
assert (is_empty_stack v1 && is_empty_stack v2);
sort_cmp (infos_env infos) univ cv_pb s1 s2
| (Meta n, Meta m) ->
if n=m
then convert_stacks univ infos lft1 lft2 v1 v2
else raise NotConvertible
| _ -> raise NotConvertible)
| (FEvar (ev1,args1), FEvar (ev2,args2)) ->
if ev1=ev2 then
(convert_stacks univ infos lft1 lft2 v1 v2;
convert_vect univ infos el1 el2 args1 args2)
else raise NotConvertible
(* 2 index known to be bound to no constant *)
| (FRel n, FRel m) ->
if reloc_rel n el1 = reloc_rel m el2
then convert_stacks univ infos lft1 lft2 v1 v2
else raise NotConvertible
(* 2 constants, 2 local defined vars or 2 defined rels *)
| (FFlex fl1, FFlex fl2) ->
(try (* try first intensional equality *)
if eq_table_key univ fl1 fl2
then convert_stacks univ infos lft1 lft2 v1 v2
else raise NotConvertible
with NotConvertible ->
(* else the oracle tells which constant is to be expanded *)
let (app1,app2) =
if oracle_order infos false fl1 fl2 then
match unfold_reference infos fl1 with
| Some def1 -> ((lft1, whd_stack infos def1 v1), appr2)
| None ->
(match unfold_reference infos fl2 with
| Some def2 -> (appr1, (lft2, whd_stack infos def2 v2))
| None -> raise NotConvertible)
else
match unfold_reference infos fl2 with
| Some def2 -> (appr1, (lft2, whd_stack infos def2 v2))
| None ->
(match unfold_reference infos fl1 with
| Some def1 -> ((lft1, whd_stack infos def1 v1), appr2)
| None -> raise NotConvertible) in
eqappr univ cv_pb infos app1 app2)
| (FProj (p1,c1), _) ->
let s1 = unfold_projection (infos_env infos) p1 in
eqappr univ cv_pb infos (lft1, whd_stack infos c1 (s1 :: v1)) appr2
| (_, FProj (p2,c2)) ->
let s2 = unfold_projection (infos_env infos) p2 in
eqappr univ cv_pb infos appr1 (lft2, whd_stack infos c2 (s2 :: v2))
(* other constructors *)
| (FLambda _, FLambda _) ->
(* Inconsistency: we tolerate that v1, v2 contain shift and update but
we throw them away *)
assert (is_empty_stack v1 && is_empty_stack v2);
let (_,ty1,bd1) = destFLambda mk_clos hd1 in
let (_,ty2,bd2) = destFLambda mk_clos hd2 in
ccnv univ CONV infos el1 el2 ty1 ty2;
ccnv univ CONV infos (el_lift el1) (el_lift el2) bd1 bd2
| (FProd (_,c1,c2), FProd (_,c'1,c'2)) ->
assert (is_empty_stack v1 && is_empty_stack v2);
(* Luo's system *)
ccnv univ CONV infos el1 el2 c1 c'1;
ccnv univ cv_pb infos (el_lift el1) (el_lift el2) c2 c'2
(* Eta-expansion on the fly *)
| (FLambda _, _) ->
if v1 <> [] then
anomaly (Pp.str "conversion was given unreduced term (FLambda).");
let (_,_ty1,bd1) = destFLambda mk_clos hd1 in
eqappr univ CONV infos
(el_lift lft1,(bd1,[])) (el_lift lft2,(hd2,eta_expand_stack v2))
| (_, FLambda _) ->
if v2 <> [] then
anomaly (Pp.str "conversion was given unreduced term (FLambda).");
let (_,_ty2,bd2) = destFLambda mk_clos hd2 in
eqappr univ CONV infos
(el_lift lft1,(hd1,eta_expand_stack v1)) (el_lift lft2,(bd2,[]))
(* only one constant, defined var or defined rel *)
| (FFlex fl1, c2) ->
(match unfold_reference infos fl1 with
| Some def1 ->
eqappr univ cv_pb infos (lft1, whd_stack infos def1 v1) appr2
| None ->
match c2 with
| FConstruct ((ind2,j2),u2) ->
(try
let v2, v1 =
eta_expand_ind_stack (infos_env infos) ind2 hd2 v2 (snd appr1)
in convert_stacks univ infos lft1 lft2 v1 v2
with Not_found -> raise NotConvertible)
| _ -> raise NotConvertible)
| (c1, FFlex fl2) ->
(match unfold_reference infos fl2 with
| Some def2 ->
eqappr univ cv_pb infos appr1 (lft2, whd_stack infos def2 v2)
| None ->
match c1 with
| FConstruct ((ind1,j1),u1) ->
(try let v1, v2 =
eta_expand_ind_stack (infos_env infos) ind1 hd1 v1 (snd appr2)
in convert_stacks univ infos lft1 lft2 v1 v2
with Not_found -> raise NotConvertible)
| _ -> raise NotConvertible)
(* Inductive types: MutInd MutConstruct Fix Cofix *)
| (FInd (ind1,u1), FInd (ind2,u2)) ->
if mind_equiv_infos infos ind1 ind2 then
if Univ.Instance.length u1 = 0 || Univ.Instance.length u2 = 0 then
begin
convert_universes univ u1 u2;
convert_stacks univ infos lft1 lft2 v1 v2
end
else
let mind = Environ.lookup_mind (fst ind1) (infos_env infos) in
let () =
convert_inductives cv_pb (mind, snd ind1) u1 (stack_args_size v1)
u2 (stack_args_size v2) univ
in
convert_stacks univ infos lft1 lft2 v1 v2
else raise NotConvertible
| (FConstruct ((ind1,j1),u1), FConstruct ((ind2,j2),u2)) ->
if Int.equal j1 j2 && mind_equiv_infos infos ind1 ind2 then
if Univ.Instance.length u1 = 0 || Univ.Instance.length u2 = 0 then
begin
convert_universes univ u1 u2;
convert_stacks univ infos lft1 lft2 v1 v2
end
else
let mind = Environ.lookup_mind (fst ind1) (infos_env infos) in
let () =
convert_constructors
(mind, snd ind1, j1) u1 (stack_args_size v1)
u2 (stack_args_size v2) univ
in
convert_stacks univ infos lft1 lft2 v1 v2
else raise NotConvertible
(* Eta expansion of records *)
| (FConstruct ((ind1,j1),u1), _) ->
(try
let v1, v2 =
eta_expand_ind_stack (infos_env infos) ind1 hd1 v1 (snd appr2)
in convert_stacks univ infos lft1 lft2 v1 v2
with Not_found -> raise NotConvertible)
| (_, FConstruct ((ind2,j2),u2)) ->
(try
let v2, v1 =
eta_expand_ind_stack (infos_env infos) ind2 hd2 v2 (snd appr1)
in convert_stacks univ infos lft1 lft2 v1 v2
with Not_found -> raise NotConvertible)
| (FFix ((op1,(_,tys1,cl1)),e1), FFix((op2,(_,tys2,cl2)),e2)) ->
if op1 = op2
then
let n = Array.length cl1 in
let fty1 = Array.map (mk_clos e1) tys1 in
let fty2 = Array.map (mk_clos e2) tys2 in
let fcl1 = Array.map (mk_clos (subs_liftn n e1)) cl1 in
let fcl2 = Array.map (mk_clos (subs_liftn n e2)) cl2 in
convert_vect univ infos el1 el2 fty1 fty2;
convert_vect univ infos
(el_liftn n el1) (el_liftn n el2) fcl1 fcl2;
convert_stacks univ infos lft1 lft2 v1 v2
else raise NotConvertible
| (FCoFix ((op1,(_,tys1,cl1)),e1), FCoFix((op2,(_,tys2,cl2)),e2)) ->
if op1 = op2
then
let n = Array.length cl1 in
let fty1 = Array.map (mk_clos e1) tys1 in
let fty2 = Array.map (mk_clos e2) tys2 in
let fcl1 = Array.map (mk_clos (subs_liftn n e1)) cl1 in
let fcl2 = Array.map (mk_clos (subs_liftn n e2)) cl2 in
convert_vect univ infos el1 el2 fty1 fty2;
convert_vect univ infos
(el_liftn n el1) (el_liftn n el2) fcl1 fcl2;
convert_stacks univ infos lft1 lft2 v1 v2
else raise NotConvertible
(* Should not happen because both (hd1,v1) and (hd2,v2) are in whnf *)
| ( (FLetIn _, _) | (FCaseT _,_) | (FApp _,_) | (FCLOS _,_) | (FLIFT _,_)
| (_, FLetIn _) | (_,FCaseT _) | (_,FApp _) | (_,FCLOS _) | (_,FLIFT _)
| (FLOCKED,_) | (_,FLOCKED) ) -> assert false
(* In all other cases, terms are not convertible *)
| _ -> raise NotConvertible
and convert_stacks univ infos lft1 lft2 stk1 stk2 =
compare_stacks
(fun (l1,t1) (l2,t2) -> ccnv univ CONV infos l1 l2 t1 t2)
(mind_equiv_infos infos)
lft1 stk1 lft2 stk2
and convert_vect univ infos lft1 lft2 v1 v2 =
Array.iter2 (fun t1 t2 -> ccnv univ CONV infos lft1 lft2 t1 t2) v1 v2
let clos_fconv cv_pb eager_delta env t1 t2 =
let infos =
create_clos_infos
(if eager_delta then betadeltaiota else betaiotazeta) env in
let univ = universes env in
ccnv univ cv_pb infos el_id el_id (inject t1) (inject t2)
let fconv cv_pb eager_delta env t1 t2 =
if eq_constr t1 t2 then ()
else clos_fconv cv_pb eager_delta env t1 t2
let conv = fconv CONV false
let conv_leq = fconv CUMUL false
(* option for conversion : no compilation for the checker *)
let vm_conv cv_pb = fconv cv_pb true
(********************************************************************)
(* Special-Purpose Reduction *)
(********************************************************************)
(* pseudo-reduction rule:
* [hnf_prod_app env s (Prod(_,B)) N --> B[N]
* with an HNF on the first argument to produce a product.
* if this does not work, then we use the string S as part of our
* error message. *)
let hnf_prod_app env t n =
match whd_all env t with
| Prod (_,_,b) -> subst1 n b
| _ -> anomaly ~label:"hnf_prod_app" (Pp.str "Need a product.")
let hnf_prod_applist env t nl =
List.fold_left (hnf_prod_app env) t nl
(* Dealing with arities *)
let dest_prod env =
let rec decrec env m c =
let t = whd_all env c in
match t with
| Prod (n,a,c0) ->
let d = LocalAssum (n,a) in
decrec (push_rel d env) (d::m) c0
| _ -> m,t
in
decrec env empty_rel_context
(* The same but preserving lets in the context, not internal ones. *)
let dest_prod_assum env =
let rec prodec_rec env l ty =
let rty = whd_allnolet env ty in
match rty with
| Prod (x,t,c) ->
let d = LocalAssum (x,t) in
prodec_rec (push_rel d env) (d::l) c
| LetIn (x,b,t,c) ->
let d = LocalDef (x,b,t) in
prodec_rec (push_rel d env) (d::l) c
| _ ->
let rty' = whd_all env rty in
if Term.eq_constr rty' rty then l, rty
else prodec_rec env l rty'
in
prodec_rec env empty_rel_context
let dest_lam_assum env =
let rec lamec_rec env l ty =
let rty = whd_allnolet env ty in
match rty with
| Lambda (x,t,c) ->
let d = LocalAssum (x,t) in
lamec_rec (push_rel d env) (d::l) c
| LetIn (x,b,t,c) ->
let d = LocalDef (x,b,t) in
lamec_rec (push_rel d env) (d::l) c
| _ -> l,rty
in
lamec_rec env empty_rel_context
let dest_arity env c =
let l, c = dest_prod_assum env c in
match c with
| Sort s -> l,s
| _ -> user_err Pp.(str "not an arity")
|