1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i*)
open CErrors
open Util
open Pp
open Names
open Cic
open Declarations
(*i*)
let error_not_a_constant l =
error ("\""^(Label.to_string l)^"\" is not a constant")
let error_not_a_functor () = error "Application of not a functor"
let error_incompatible_modtypes _ _ = error "Incompatible module types"
let error_not_match l _ =
error ("Signature components for label "^Label.to_string l^" do not match")
let error_no_such_label l = error ("No such label "^Label.to_string l)
let error_no_such_label_sub l l1 =
let l1 = ModPath.to_string l1 in
error ("The field "^
Label.to_string l^" is missing in "^l1^".")
let error_not_a_module_loc loc s =
user_err ~loc (str ("\""^Label.to_string s^"\" is not a module"))
let error_not_a_module s = error_not_a_module_loc Loc.ghost s
let error_with_module () =
error "Unsupported 'with' constraint in module implementation"
let is_functor = function
| MoreFunctor _ -> true
| NoFunctor _ -> false
let destr_functor = function
| MoreFunctor (arg_id,arg_t,body_t) -> (arg_id,arg_t,body_t)
| NoFunctor _ -> error_not_a_functor ()
let module_body_of_type mp mtb =
{ mtb with mod_mp = mp; mod_expr = Abstract }
let rec add_structure mp sign resolver env =
let add_one env (l,elem) =
let kn = KerName.make2 mp l in
let con = Constant.make1 kn in
let mind = mind_of_delta resolver (MutInd.make1 kn) in
match elem with
| SFBconst cb ->
(* let con = constant_of_delta resolver con in*)
Environ.add_constant con cb env
| SFBmind mib ->
(* let mind = mind_of_delta resolver mind in*)
Environ.add_mind mind mib env
| SFBmodule mb -> add_module mb env
(* adds components as well *)
| SFBmodtype mtb -> Environ.add_modtype mtb.mod_mp mtb env
in
List.fold_left add_one env sign
and add_module mb env =
let mp = mb.mod_mp in
let env = Environ.shallow_add_module mp mb env in
match mb.mod_type with
| NoFunctor struc -> add_structure mp struc mb.mod_delta env
| MoreFunctor _ -> env
let add_module_type mp mtb env = add_module (module_body_of_type mp mtb) env
let strengthen_const mp_from l cb resolver =
match cb.const_body with
| Def _ -> cb
| _ ->
let con = Constant.make2 mp_from l in
let u =
if cb.const_polymorphic then
Univ.make_abstract_instance cb.const_universes
else Univ.Instance.empty
in
{ cb with
const_body = Def (Declarations.from_val (Const (con,u))) }
let rec strengthen_mod mp_from mp_to mb =
if Declarations.mp_in_delta mb.mod_mp mb.mod_delta then mb
else strengthen_body true mp_from mp_to mb
and strengthen_body is_mod mp_from mp_to mb =
match mb.mod_type with
| MoreFunctor _ -> mb
| NoFunctor sign ->
let resolve_out,sign_out = strengthen_sig mp_from sign mp_to mb.mod_delta
in
{ mb with
mod_expr =
(if is_mod then Algebraic (NoFunctor (MEident mp_to)) else Abstract);
mod_type = NoFunctor sign_out;
mod_delta = resolve_out }
and strengthen_sig mp_from sign mp_to resolver =
match sign with
| [] -> empty_delta_resolver,[]
| (l,SFBconst cb) :: rest ->
let item' = l,SFBconst (strengthen_const mp_from l cb resolver) in
let resolve_out,rest' = strengthen_sig mp_from rest mp_to resolver in
resolve_out,item'::rest'
| (_,SFBmind _ as item):: rest ->
let resolve_out,rest' = strengthen_sig mp_from rest mp_to resolver in
resolve_out,item::rest'
| (l,SFBmodule mb) :: rest ->
let mp_from' = MPdot (mp_from,l) in
let mp_to' = MPdot(mp_to,l) in
let mb_out = strengthen_mod mp_from' mp_to' mb in
let item' = l,SFBmodule (mb_out) in
let resolve_out,rest' = strengthen_sig mp_from rest mp_to resolver in
resolve_out (*add_delta_resolver resolve_out mb.mod_delta*),
item':: rest'
| (l,SFBmodtype mty as item) :: rest ->
let resolve_out,rest' = strengthen_sig mp_from rest mp_to resolver in
resolve_out,item::rest'
let strengthen mtb mp =
strengthen_body false mtb.mod_mp mp mtb
let subst_and_strengthen mb mp =
strengthen_mod mb.mod_mp mp (subst_module (map_mp mb.mod_mp mp) mb)
let module_type_of_module mp mb =
let mtb =
{ mb with
mod_expr = Abstract;
mod_type_alg = None;
mod_retroknowledge = [] }
in
match mp with
| Some mp -> strengthen {mtb with mod_mp = mp} mp
| None -> mtb
|