1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
|
open Util
open Names
open Cic
open Term
(** Substitutions, code imported from kernel/mod_subst *)
module Deltamap = struct
type t = delta_resolver
let empty = MPmap.empty, KNmap.empty
let is_empty (mm, km) = MPmap.is_empty mm && KNmap.is_empty km
let add_kn kn hint (mm,km) = (mm,KNmap.add kn hint km)
let add_mp mp mp' (mm,km) = (MPmap.add mp mp' mm, km)
let remove_mp mp (mm,km) = (MPmap.remove mp mm, km)
let find_mp mp map = MPmap.find mp (fst map)
let find_kn kn map = KNmap.find kn (snd map)
let mem_mp mp map = MPmap.mem mp (fst map)
let mem_kn kn map = KNmap.mem kn (snd map)
let fold_kn f map i = KNmap.fold f (snd map) i
let fold fmp fkn (mm,km) i =
MPmap.fold fmp mm (KNmap.fold fkn km i)
let join map1 map2 = fold add_mp add_kn map1 map2
end
let empty_delta_resolver = Deltamap.empty
module Umap = struct
type 'a t = 'a umap_t
let empty = MPmap.empty, MBImap.empty
let is_empty (m1,m2) = MPmap.is_empty m1 && MBImap.is_empty m2
let add_mbi mbi x (m1,m2) = (m1,MBImap.add mbi x m2)
let add_mp mp x (m1,m2) = (MPmap.add mp x m1, m2)
let find_mp mp map = MPmap.find mp (fst map)
let find_mbi mbi map = MBImap.find mbi (snd map)
let mem_mp mp map = MPmap.mem mp (fst map)
let mem_mbi mbi map = MBImap.mem mbi (snd map)
let iter_mbi f map = MBImap.iter f (snd map)
let fold fmp fmbi (m1,m2) i =
MPmap.fold fmp m1 (MBImap.fold fmbi m2 i)
let join map1 map2 = fold add_mp add_mbi map1 map2
end
type 'a subst_fun = substitution -> 'a -> 'a
let empty_subst = Umap.empty
let is_empty_subst = Umap.is_empty
let add_mbid mbid mp = Umap.add_mbi mbid (mp,empty_delta_resolver)
let add_mp mp1 mp2 = Umap.add_mp mp1 (mp2,empty_delta_resolver)
let map_mbid mbid mp = add_mbid mbid mp empty_subst
let map_mp mp1 mp2 = add_mp mp1 mp2 empty_subst
let mp_in_delta mp =
Deltamap.mem_mp mp
let find_prefix resolve mp =
let rec sub_mp = function
| MPdot(mp,l) as mp_sup ->
(try Deltamap.find_mp mp_sup resolve
with Not_found -> MPdot(sub_mp mp,l))
| p -> Deltamap.find_mp p resolve
in
try sub_mp mp with Not_found -> mp
(** Nota: the following function is slightly different in mod_subst
PL: Is it on purpose ? *)
let solve_delta_kn resolve kn =
try
match Deltamap.find_kn kn resolve with
| Equiv kn1 -> kn1
| Inline _ -> raise Not_found
with Not_found ->
let mp,dir,l = repr_kn kn in
let new_mp = find_prefix resolve mp in
if mp == new_mp then
kn
else
make_kn new_mp dir l
let gen_of_delta resolve x kn fix_can =
let new_kn = solve_delta_kn resolve kn in
if kn == new_kn then x else fix_can new_kn
let constant_of_delta resolve con =
let kn = user_con con in
gen_of_delta resolve con kn (constant_of_kn_equiv kn)
let constant_of_delta2 resolve con =
let kn, kn' = canonical_con con, user_con con in
gen_of_delta resolve con kn (constant_of_kn_equiv kn')
let mind_of_delta resolve mind =
let kn = user_mind mind in
gen_of_delta resolve mind kn (mind_of_kn_equiv kn)
let mind_of_delta2 resolve mind =
let kn, kn' = canonical_mind mind, user_mind mind in
gen_of_delta resolve mind kn (mind_of_kn_equiv kn')
let find_inline_of_delta kn resolve =
match Deltamap.find_kn kn resolve with
| Inline (_,o) -> o
| _ -> raise Not_found
let constant_of_delta_with_inline resolve con =
let kn1,kn2 = canonical_con con,user_con con in
try find_inline_of_delta kn2 resolve
with Not_found ->
try find_inline_of_delta kn1 resolve
with Not_found -> None
let subst_mp0 sub mp = (* 's like subst *)
let rec aux mp =
match mp with
| MPfile sid -> Umap.find_mp mp sub
| MPbound bid ->
begin
try Umap.find_mbi bid sub
with Not_found -> Umap.find_mp mp sub
end
| MPdot (mp1,l) as mp2 ->
begin
try Umap.find_mp mp2 sub
with Not_found ->
let mp1',resolve = aux mp1 in
MPdot (mp1',l),resolve
end
in
try Some (aux mp) with Not_found -> None
let subst_mp sub mp =
match subst_mp0 sub mp with
None -> mp
| Some (mp',_) -> mp'
let subst_kn_delta sub kn =
let mp,dir,l = repr_kn kn in
match subst_mp0 sub mp with
Some (mp',resolve) ->
solve_delta_kn resolve (make_kn mp' dir l)
| None -> kn
let subst_kn sub kn =
let mp,dir,l = repr_kn kn in
match subst_mp0 sub mp with
Some (mp',_) ->
make_kn mp' dir l
| None -> kn
exception No_subst
type sideconstantsubst =
| User
| Canonical
let gen_subst_mp f sub mp1 mp2 =
match subst_mp0 sub mp1, subst_mp0 sub mp2 with
| None, None -> raise No_subst
| Some (mp',resolve), None -> User, (f mp' mp2), resolve
| None, Some (mp',resolve) -> Canonical, (f mp1 mp'), resolve
| Some (mp1',_), Some (mp2',resolve2) -> Canonical, (f mp1' mp2'), resolve2
let make_mind_equiv mpu mpc dir l =
let knu = make_kn mpu dir l in
if mpu == mpc then mind_of_kn knu
else mind_of_kn_equiv knu (make_kn mpc dir l)
let subst_ind sub mind =
let kn1,kn2 = user_mind mind, canonical_mind mind in
let mp1,dir,l = repr_kn kn1 in
let mp2,_,_ = repr_kn kn2 in
let rebuild_mind mp1 mp2 = make_mind_equiv mp1 mp2 dir l in
try
let side,mind',resolve = gen_subst_mp rebuild_mind sub mp1 mp2 in
match side with
| User -> mind_of_delta resolve mind'
| Canonical -> mind_of_delta2 resolve mind'
with No_subst -> mind
let make_con_equiv mpu mpc dir l =
let knu = make_kn mpu dir l in
if mpu == mpc then constant_of_kn knu
else constant_of_kn_equiv knu (make_kn mpc dir l)
let subst_con0 sub con =
let kn1,kn2 = user_con con,canonical_con con in
let mp1,dir,l = repr_kn kn1 in
let mp2,_,_ = repr_kn kn2 in
let rebuild_con mp1 mp2 = make_con_equiv mp1 mp2 dir l in
let dup con = con, Const con in
let side,con',resolve = gen_subst_mp rebuild_con sub mp1 mp2 in
match constant_of_delta_with_inline resolve con' with
| Some t -> con', t
| None ->
let con'' = match side with
| User -> constant_of_delta resolve con'
| Canonical -> constant_of_delta2 resolve con'
in
if con'' == con then raise No_subst else dup con''
let rec map_kn f f' c =
let func = map_kn f f' in
match c with
| Const kn -> (try snd (f' kn) with No_subst -> c)
| Ind (kn,i) ->
let kn' = f kn in
if kn'==kn then c else Ind (kn',i)
| Construct ((kn,i),j) ->
let kn' = f kn in
if kn'==kn then c else Construct ((kn',i),j)
| Case (ci,p,ct,l) ->
let ci_ind =
let (kn,i) = ci.ci_ind in
let kn' = f kn in
if kn'==kn then ci.ci_ind else kn',i
in
let p' = func p in
let ct' = func ct in
let l' = Array.smartmap func l in
if (ci.ci_ind==ci_ind && p'==p
&& l'==l && ct'==ct)then c
else
Case ({ci with ci_ind = ci_ind},
p',ct', l')
| Cast (ct,k,t) ->
let ct' = func ct in
let t'= func t in
if (t'==t && ct'==ct) then c
else Cast (ct', k, t')
| Prod (na,t,ct) ->
let ct' = func ct in
let t'= func t in
if (t'==t && ct'==ct) then c
else Prod (na, t', ct')
| Lambda (na,t,ct) ->
let ct' = func ct in
let t'= func t in
if (t'==t && ct'==ct) then c
else Lambda (na, t', ct')
| LetIn (na,b,t,ct) ->
let ct' = func ct in
let t'= func t in
let b'= func b in
if (t'==t && ct'==ct && b==b') then c
else LetIn (na, b', t', ct')
| App (ct,l) ->
let ct' = func ct in
let l' = Array.smartmap func l in
if (ct'== ct && l'==l) then c
else App (ct',l')
| Evar (e,l) ->
let l' = Array.smartmap func l in
if (l'==l) then c
else Evar (e,l')
| Fix (ln,(lna,tl,bl)) ->
let tl' = Array.smartmap func tl in
let bl' = Array.smartmap func bl in
if (bl == bl'&& tl == tl') then c
else Fix (ln,(lna,tl',bl'))
| CoFix(ln,(lna,tl,bl)) ->
let tl' = Array.smartmap func tl in
let bl' = Array.smartmap func bl in
if (bl == bl'&& tl == tl') then c
else CoFix (ln,(lna,tl',bl'))
| _ -> c
let subst_mps sub c =
if is_empty_subst sub then c
else map_kn (subst_ind sub) (subst_con0 sub) c
let rec replace_mp_in_mp mpfrom mpto mp =
match mp with
| _ when ModPath.equal mp mpfrom -> mpto
| MPdot (mp1,l) ->
let mp1' = replace_mp_in_mp mpfrom mpto mp1 in
if mp1==mp1' then mp
else MPdot (mp1',l)
| _ -> mp
let rec mp_in_mp mp mp1 =
match mp1 with
| _ when ModPath.equal mp1 mp -> true
| MPdot (mp2,l) -> mp_in_mp mp mp2
| _ -> false
let subset_prefixed_by mp resolver =
let mp_prefix mkey mequ rslv =
if mp_in_mp mp mkey then Deltamap.add_mp mkey mequ rslv else rslv
in
let kn_prefix kn hint rslv =
match hint with
| Inline _ -> rslv
| Equiv _ ->
if mp_in_mp mp (modpath kn) then Deltamap.add_kn kn hint rslv else rslv
in
Deltamap.fold mp_prefix kn_prefix resolver empty_delta_resolver
let subst_dom_delta_resolver subst resolver =
let mp_apply_subst mkey mequ rslv =
Deltamap.add_mp (subst_mp subst mkey) mequ rslv
in
let kn_apply_subst kkey hint rslv =
Deltamap.add_kn (subst_kn subst kkey) hint rslv
in
Deltamap.fold mp_apply_subst kn_apply_subst resolver empty_delta_resolver
let subst_mp_delta sub mp mkey =
match subst_mp0 sub mp with
None -> empty_delta_resolver,mp
| Some (mp',resolve) ->
let mp1 = find_prefix resolve mp' in
let resolve1 = subset_prefixed_by mp1 resolve in
(subst_dom_delta_resolver
(map_mp mp1 mkey) resolve1),mp1
let gen_subst_delta_resolver dom subst resolver =
let mp_apply_subst mkey mequ rslv =
let mkey' = if dom then subst_mp subst mkey else mkey in
let rslv',mequ' = subst_mp_delta subst mequ mkey in
Deltamap.join rslv' (Deltamap.add_mp mkey' mequ' rslv)
in
let kn_apply_subst kkey hint rslv =
let kkey' = if dom then subst_kn subst kkey else kkey in
let hint' = match hint with
| Equiv kequ -> Equiv (subst_kn_delta subst kequ)
| Inline (lev,Some t) -> Inline (lev,Some (subst_mps subst t))
| Inline (_,None) -> hint
in
Deltamap.add_kn kkey' hint' rslv
in
Deltamap.fold mp_apply_subst kn_apply_subst resolver empty_delta_resolver
let subst_codom_delta_resolver = gen_subst_delta_resolver false
let subst_dom_codom_delta_resolver = gen_subst_delta_resolver true
let update_delta_resolver resolver1 resolver2 =
let mp_apply_rslv mkey mequ rslv =
if Deltamap.mem_mp mkey resolver2 then rslv
else Deltamap.add_mp mkey (find_prefix resolver2 mequ) rslv
in
let kn_apply_rslv kkey hint rslv =
if Deltamap.mem_kn kkey resolver2 then rslv
else
let hint' = match hint with
| Equiv kequ -> Equiv (solve_delta_kn resolver2 kequ)
| _ -> hint
in
Deltamap.add_kn kkey hint' rslv
in
Deltamap.fold mp_apply_rslv kn_apply_rslv resolver1 empty_delta_resolver
let add_delta_resolver resolver1 resolver2 =
if resolver1 == resolver2 then
resolver2
else if Deltamap.is_empty resolver2 then
resolver1
else
Deltamap.join (update_delta_resolver resolver1 resolver2) resolver2
let substition_prefixed_by k mp subst =
let mp_prefixmp kmp (mp_to,reso) sub =
if mp_in_mp mp kmp && not (ModPath.equal mp kmp) then
let new_key = replace_mp_in_mp mp k kmp in
Umap.add_mp new_key (mp_to,reso) sub
else sub
in
let mbi_prefixmp mbi _ sub = sub
in
Umap.fold mp_prefixmp mbi_prefixmp subst empty_subst
let join subst1 subst2 =
let apply_subst mpk add (mp,resolve) res =
let mp',resolve' =
match subst_mp0 subst2 mp with
| None -> mp, None
| Some (mp',resolve') -> mp', Some resolve' in
let resolve'' =
match resolve' with
| Some res ->
add_delta_resolver
(subst_dom_codom_delta_resolver subst2 resolve) res
| None ->
subst_codom_delta_resolver subst2 resolve
in
let prefixed_subst = substition_prefixed_by mpk mp' subst2 in
Umap.join prefixed_subst (add (mp',resolve'') res)
in
let mp_apply_subst mp = apply_subst mp (Umap.add_mp mp) in
let mbi_apply_subst mbi = apply_subst (MPbound mbi) (Umap.add_mbi mbi) in
let subst = Umap.fold mp_apply_subst mbi_apply_subst subst1 empty_subst in
Umap.join subst2 subst
let from_val x = { subst_value = x; subst_subst = []; }
let force fsubst r = match r.subst_subst with
| [] -> r.subst_value
| s ->
let subst = List.fold_left join empty_subst (List.rev s) in
let x = fsubst subst r.subst_value in
let () = r.subst_subst <- [] in
let () = r.subst_value <- x in
x
let subst_substituted s r = { r with subst_subst = s :: r.subst_subst; }
let force_constr = force subst_mps
let subst_constr_subst = subst_substituted
let subst_lazy_constr sub = function
| Indirect (l,dp,i) -> Indirect (sub::l,dp,i)
let indirect_opaque_access =
ref ((fun dp i -> assert false) : DirPath.t -> int -> constr)
let indirect_opaque_univ_access =
ref ((fun dp i -> assert false) : DirPath.t -> int -> Univ.constraints)
let force_lazy_constr = function
| Indirect (l,dp,i) ->
let c = !indirect_opaque_access dp i in
force_constr (List.fold_right subst_constr_subst l (from_val c))
let force_lazy_constr_univs = function
| OpaqueDef (Indirect (l,dp,i)) -> !indirect_opaque_univ_access dp i
| _ -> Univ.empty_constraint
let subst_constant_def sub = function
| Undef inl -> Undef inl
| Def c -> Def (subst_constr_subst sub c)
| OpaqueDef lc -> OpaqueDef (subst_lazy_constr sub lc)
(** Local variables and graph *)
type universe_context = Univ.LSet.t * Univ.constraints
let body_of_constant cb = match cb.const_body with
| Undef _ -> None
| Def c -> Some (force_constr c)
| OpaqueDef c -> Some (force_lazy_constr c)
let constant_has_body cb = match cb.const_body with
| Undef _ -> false
| Def _ | OpaqueDef _ -> true
let is_opaque cb = match cb.const_body with
| OpaqueDef _ -> true
| Def _ | Undef _ -> false
let subst_rel_declaration sub (id,copt,t as x) =
let copt' = Option.smartmap (subst_mps sub) copt in
let t' = subst_mps sub t in
if copt == copt' && t == t' then x else (id,copt',t')
let subst_rel_context sub = List.smartmap (subst_rel_declaration sub)
let subst_recarg sub r = match r with
| Norec -> r
| (Mrec(kn,i)|Imbr (kn,i)) -> let kn' = subst_ind sub kn in
if kn==kn' then r else Imbr (kn',i)
let mk_norec = Rtree.mk_node Norec [||]
let mk_paths r recargs =
Rtree.mk_node r
(Array.map (fun l -> Rtree.mk_node Norec (Array.of_list l)) recargs)
let dest_recarg p = fst (Rtree.dest_node p)
let dest_subterms p =
let (_,cstrs) = Rtree.dest_node p in
Array.map (fun t -> Array.to_list (snd (Rtree.dest_node t))) cstrs
let subst_wf_paths sub p = Rtree.smartmap (subst_recarg sub) p
let eq_recarg r1 r2 = match r1, r2 with
| Norec, Norec -> true
| Mrec i1, Mrec i2 -> Names.eq_ind i1 i2
| Imbr i1, Imbr i2 -> Names.eq_ind i1 i2
| _ -> false
let eq_wf_paths = Rtree.equal eq_recarg
(**********************************************************************)
(* Representation of mutual inductive types in the kernel *)
(*
Inductive I1 (params) : U1 := c11 : T11 | ... | c1p1 : T1p1
...
with In (params) : Un := cn1 : Tn1 | ... | cnpn : Tnpn
*)
let subst_arity sub s = subst_mps sub s
(* TODO: should be changed to non-coping after Term.subst_mps *)
(* NB: we leave bytecode and native code fields untouched *)
let subst_const_body sub cb =
{ cb with
const_body = subst_constant_def sub cb.const_body;
const_type = subst_arity sub cb.const_type }
let subst_mind_packet sub mbp =
{ mind_consnames = mbp.mind_consnames;
mind_consnrealdecls = mbp.mind_consnrealdecls;
mind_consnrealargs = mbp.mind_consnrealargs;
mind_typename = mbp.mind_typename;
mind_nf_lc = Array.smartmap (subst_mps sub) mbp.mind_nf_lc;
mind_arity_ctxt = subst_rel_context sub mbp.mind_arity_ctxt;
mind_arity = subst_arity sub mbp.mind_arity;
mind_user_lc = Array.smartmap (subst_mps sub) mbp.mind_user_lc;
mind_nrealargs = mbp.mind_nrealargs;
mind_nrealargs_ctxt = mbp.mind_nrealargs_ctxt;
mind_kelim = mbp.mind_kelim;
mind_recargs = subst_wf_paths sub mbp.mind_recargs (*wf_paths*);
mind_nb_constant = mbp.mind_nb_constant;
mind_nb_args = mbp.mind_nb_args;
mind_reloc_tbl = mbp.mind_reloc_tbl }
let subst_mind sub mib =
{ mib with
mind_params_ctxt = map_rel_context (subst_mps sub) mib.mind_params_ctxt;
mind_packets = Array.smartmap (subst_mind_packet sub) mib.mind_packets }
(* Modules *)
let rec functor_map fty f0 = function
| NoFunctor a -> NoFunctor (f0 a)
| MoreFunctor (mbid,ty,e) -> MoreFunctor(mbid,fty ty,functor_map fty f0 e)
let implem_map fs fa = function
| Struct s -> Struct (fs s)
| Algebraic a -> Algebraic (fa a)
| impl -> impl
let subst_with_body sub = function
| WithMod(id,mp) -> WithMod(id,subst_mp sub mp)
| WithDef(id,c) -> WithDef(id,subst_mps sub c)
let rec subst_expr sub = function
| MEident mp -> MEident (subst_mp sub mp)
| MEapply (me1,mp2)-> MEapply (subst_expr sub me1, subst_mp sub mp2)
| MEwith (me,wd)-> MEwith (subst_expr sub me, subst_with_body sub wd)
let rec subst_expression sub me =
functor_map (subst_modtype sub) (subst_expr sub) me
and subst_signature sub sign =
functor_map (subst_modtype sub) (subst_structure sub) sign
and subst_modtype sub mtb=
{ mtb with
typ_mp = subst_mp sub mtb.typ_mp;
typ_expr = subst_signature sub mtb.typ_expr;
typ_expr_alg = Option.smartmap (subst_expression sub) mtb.typ_expr_alg }
and subst_structure sub struc =
let subst_body = function
| SFBconst cb -> SFBconst (subst_const_body sub cb)
| SFBmind mib -> SFBmind (subst_mind sub mib)
| SFBmodule mb -> SFBmodule (subst_module sub mb)
| SFBmodtype mtb -> SFBmodtype (subst_modtype sub mtb)
in
List.map (fun (l,b) -> (l,subst_body b)) struc
and subst_module sub mb =
{ mb with
mod_mp = subst_mp sub mb.mod_mp;
mod_expr =
implem_map (subst_signature sub) (subst_expression sub) mb.mod_expr;
mod_type = subst_signature sub mb.mod_type;
mod_type_alg = Option.map (subst_expression sub) mb.mod_type_alg }
|