aboutsummaryrefslogtreecommitdiffhomepage
path: root/checker/closure.mli
blob: fa302de640d810f211eed8ce4fc43179779695b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: closure.mli 9902 2007-06-21 17:01:21Z herbelin $ i*)

(*i*)
open Pp
open Names
open Term
open Esubst
open Environ
(*i*)

(* Flags for profiling reductions. *)
val stats : bool ref
val share : bool ref

val with_stats: 'a Lazy.t -> 'a

(*s Delta implies all consts (both global (= by
  [kernel_name]) and local (= by [Rel] or [Var])), all evars, and letin's.
  Rem: reduction of a Rel/Var bound to a term is Delta, but reduction of 
  a LetIn expression is Letin reduction *)

type transparent_state = Idpred.t * Cpred.t

val all_opaque      : transparent_state
val all_transparent : transparent_state

(* Sets of reduction kinds. *)
module type RedFlagsSig = sig
  type reds
  type red_kind

  (* The different kinds of reduction *)
  val fBETA : red_kind
  val fDELTA : red_kind
  val fIOTA : red_kind
  val fZETA : red_kind
  val fCONST : constant -> red_kind
  val fVAR : identifier -> red_kind

  (* No reduction at all *)
  val no_red : reds

  (* Adds a reduction kind to a set *)
  val red_add : reds -> red_kind -> reds

  (* Removes a reduction kind to a set *)
  val red_sub : reds -> red_kind -> reds

  (* Adds a reduction kind to a set *)
  val red_add_transparent : reds -> transparent_state -> reds

  (* Build a reduction set from scratch = iter [red_add] on [no_red] *)
  val mkflags : red_kind list -> reds

  (* Tests if a reduction kind is set *)
  val red_set : reds -> red_kind -> bool

  (* Gives the constant list *)
  val red_get_const : reds -> bool * evaluable_global_reference list
end

module RedFlags : RedFlagsSig
open RedFlags

val beta               : reds
val betaiota           : reds
val betadeltaiota      : reds
val betaiotazeta       : reds
val betadeltaiotanolet : reds

val unfold_red : evaluable_global_reference -> reds

(***********************************************************************)
type table_key =
  | ConstKey of constant
  | VarKey of identifier
  | RelKey of int

type 'a infos
val ref_value_cache: 'a infos -> table_key -> 'a option
val info_flags: 'a infos -> reds
val create: ('a infos -> constr -> 'a) -> reds -> env -> 'a infos

(************************************************************************)
(*s Lazy reduction. *)

(* [fconstr] is the type of frozen constr *)

type fconstr

(* [fconstr] can be accessed by using the function [fterm_of] and by
   matching on type [fterm] *)

type fterm =
  | FRel of int
  | FAtom of constr (* Metas and Sorts *)
  | FCast of fconstr * cast_kind * fconstr 
  | FFlex of table_key
  | FInd of inductive
  | FConstruct of constructor
  | FApp of fconstr * fconstr array
  | FFix of fixpoint * fconstr subs
  | FCoFix of cofixpoint * fconstr subs
  | FCases of case_info * fconstr * fconstr * fconstr array
  | FLambda of int * (name * constr) list * constr * fconstr subs
  | FProd of name * fconstr * fconstr
  | FLetIn of name * fconstr * fconstr * constr * fconstr subs
  | FEvar of existential_key * fconstr array
  | FLIFT of int * fconstr
  | FCLOS of constr * fconstr subs
  | FLOCKED

(************************************************************************)
(*s A [stack] is a context of arguments, arguments are pushed by
   [append_stack] one array at a time but popped with [decomp_stack]
   one by one *)

type stack_member =
  | Zapp of fconstr array
  | Zcase of case_info * fconstr * fconstr array
  | Zfix of fconstr * stack
  | Zshift of int
  | Zupdate of fconstr

and stack = stack_member list

val empty_stack : stack
val append_stack : fconstr array -> stack -> stack

val decomp_stack : stack -> (fconstr * stack) option
val array_of_stack : stack -> fconstr array
val stack_assign : stack -> int -> fconstr -> stack
val stack_args_size : stack -> int
val stack_tail : int -> stack -> stack
val stack_nth : stack -> int -> fconstr

(* To lazy reduce a constr, create a [clos_infos] with
   [create_clos_infos], inject the term to reduce with [inject]; then use
   a reduction function *)

val inject : constr -> fconstr
(* mk_atom: prevents a term from being evaluated *)
val mk_atom : constr -> fconstr

val fterm_of : fconstr -> fterm
val term_of_fconstr : fconstr -> constr
val destFLambda :
  (fconstr subs -> constr -> fconstr) -> fconstr -> name * fconstr * fconstr

(* Global and local constant cache *)
type clos_infos
val create_clos_infos : reds -> env -> clos_infos

(* Reduction function *)

(* [whd_val] is for weak head normalization *)
val whd_val : clos_infos -> fconstr -> constr

(* [whd_stack] performs weak head normalization in a given stack. It
   stops whenever a reduction is blocked. *)
val whd_stack :
  clos_infos -> fconstr -> stack -> fconstr * stack

(* Conversion auxiliary functions to do step by step normalisation *)

(* [unfold_reference] unfolds references in a [fconstr] *)
val unfold_reference : clos_infos -> table_key -> fconstr option

(* [mind_equiv] checks whether two inductive types are intentionally equal *)
val mind_equiv_infos : clos_infos -> inductive -> inductive -> bool

(************************************************************************)
(*i This is for lazy debug *)

val lift_fconstr      : int -> fconstr -> fconstr
val lift_fconstr_vect : int -> fconstr array -> fconstr array

val mk_clos      : fconstr subs -> constr -> fconstr
val mk_clos_vect : fconstr subs -> constr array -> fconstr array
val mk_clos_deep :
  (fconstr subs -> constr -> fconstr) ->
   fconstr subs -> constr -> fconstr

val kni: clos_infos -> fconstr -> stack -> fconstr * stack
val knr: clos_infos -> fconstr -> stack -> fconstr * stack

val to_constr : (lift -> fconstr -> constr) -> lift -> fconstr -> constr
val optimise_closure : fconstr subs -> constr -> fconstr subs * constr

(* End of cbn debug section i*)