blob: 49b07f730dfd36dc6a9284dd3617007b53cf6b7d (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(*i*)
open Names
open Cic
open Esubst
open Environ
(*i*)
(* Flags for profiling reductions. *)
val stats : bool ref
val share : bool ref
val with_stats: 'a Lazy.t -> 'a
(*s Delta implies all consts (both global (= by
[kernel_name]) and local (= by [Rel] or [Var])), all evars, and letin's.
Rem: reduction of a Rel/Var bound to a term is Delta, but reduction of
a LetIn expression is Letin reduction *)
(* Sets of reduction kinds. *)
module type RedFlagsSig = sig
type reds
type red_kind
(* The different kinds of reduction *)
val fBETA : red_kind
val fDELTA : red_kind
val fIOTA : red_kind
val fZETA : red_kind
(* No reduction at all *)
val no_red : reds
(* Adds a reduction kind to a set *)
val red_add : reds -> red_kind -> reds
(* Build a reduction set from scratch = iter [red_add] on [no_red] *)
val mkflags : red_kind list -> reds
(* Tests if a reduction kind is set *)
val red_set : reds -> red_kind -> bool
end
module RedFlags : RedFlagsSig
open RedFlags
val betadeltaiota : reds
val betaiotazeta : reds
val betadeltaiotanolet : reds
(***********************************************************************)
type table_key = Constant.t puniverses tableKey
type 'a infos
val ref_value_cache: 'a infos -> table_key -> 'a option
val create: ('a infos -> constr -> 'a) -> reds -> env -> 'a infos
(************************************************************************)
(*s Lazy reduction. *)
(* [fconstr] is the type of frozen constr *)
type fconstr
(* [fconstr] can be accessed by using the function [fterm_of] and by
matching on type [fterm] *)
type fterm =
| FRel of int
| FAtom of constr (* Metas and Sorts *)
| FCast of fconstr * cast_kind * fconstr
| FFlex of table_key
| FInd of pinductive
| FConstruct of pconstructor
| FApp of fconstr * fconstr array
| FProj of Projection.t * fconstr
| FFix of fixpoint * fconstr subs
| FCoFix of cofixpoint * fconstr subs
| FCaseT of case_info * constr * fconstr * constr array * fconstr subs (* predicate and branches are closures *)
| FLambda of int * (Name.t * constr) list * constr * fconstr subs
| FProd of Name.t * fconstr * fconstr
| FLetIn of Name.t * fconstr * fconstr * constr * fconstr subs
| FEvar of existential_key * fconstr array
| FLIFT of int * fconstr
| FCLOS of constr * fconstr subs
| FLOCKED
(************************************************************************)
(*s A [stack] is a context of arguments, arguments are pushed by
[append_stack] one array at a time but popped with [decomp_stack]
one by one *)
type stack_member =
| Zapp of fconstr array
| ZcaseT of case_info * constr * constr array * fconstr subs
| Zproj of int * int * Projection.t
| Zfix of fconstr * stack
| Zshift of int
| Zupdate of fconstr
and stack = stack_member list
val append_stack : fconstr array -> stack -> stack
val stack_args_size : stack -> int
val eta_expand_stack : stack -> stack
val eta_expand_ind_stack : env -> inductive -> fconstr -> stack ->
(fconstr * stack) -> stack * stack
val unfold_projection : env -> Projection.t -> stack_member
(* To lazy reduce a constr, create a [clos_infos] with
[create_clos_infos], inject the term to reduce with [inject]; then use
a reduction function *)
val inject : constr -> fconstr
val fterm_of : fconstr -> fterm
val term_of_fconstr : fconstr -> constr
val destFLambda :
(fconstr subs -> constr -> fconstr) -> fconstr -> Name.t * fconstr * fconstr
(* Global and local constant cache *)
type clos_infos
val create_clos_infos : reds -> env -> clos_infos
val infos_env : clos_infos -> env
val infos_flags : clos_infos -> reds
val oracle_of_infos : clos_infos -> oracle
(* Reduction function *)
(* [whd_val] is for weak head normalization *)
val whd_val : clos_infos -> fconstr -> constr
(* [whd_stack] performs weak head normalization in a given stack. It
stops whenever a reduction is blocked. *)
val whd_stack :
clos_infos -> fconstr -> stack -> fconstr * stack
(* Conversion auxiliary functions to do step by step normalisation *)
(* [unfold_reference] unfolds references in a [fconstr] *)
val unfold_reference : clos_infos -> table_key -> fconstr option
(* [mind_equiv] checks whether two inductive types are intentionally equal *)
val mind_equiv_infos : clos_infos -> inductive -> inductive -> bool
(************************************************************************)
(*i This is for lazy debug *)
val lift_fconstr : int -> fconstr -> fconstr
val lift_fconstr_vect : int -> fconstr array -> fconstr array
val mk_clos : fconstr subs -> constr -> fconstr
val mk_clos_vect : fconstr subs -> constr array -> fconstr array
val mk_clos_deep :
(fconstr subs -> constr -> fconstr) ->
fconstr subs -> constr -> fconstr
val kni: clos_infos -> fconstr -> stack -> fconstr * stack
val knr: clos_infos -> fconstr -> stack -> fconstr * stack
val to_constr : (lift -> fconstr -> constr) -> lift -> fconstr -> constr
(* End of cbn debug section i*)
|