(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* () (* Misc *) let cl_of_qualid = function | FunClass -> Classops.CL_FUN | SortClass -> Classops.CL_SORT | RefClass r -> Class.class_of_global (Smartlocate.smart_global ~head:true r) let scope_class_of_qualid qid = Notation.scope_class_of_reference (Smartlocate.smart_global qid) (*******************) (* "Show" commands *) let show_proof () = (* spiwack: this would probably be cooler with a bit of polishing. *) let p = Proof_global.give_me_the_proof () in let pprf = Proof.partial_proof p in msg_notice (Pp.prlist_with_sep Pp.fnl Printer.pr_constr pprf) let show_node () = (* spiwack: I'm have little clue what this function used to do. I deactivated it, could, possibly, be cleaned away. (Feb. 2010) *) () let show_thesis () = msg_error (anomaly (Pp.str "TODO") ) let show_top_evars () = (* spiwack: new as of Feb. 2010: shows goal evars in addition to non-goal evars. *) let pfts = get_pftreestate () in let gls = Proof.V82.subgoals pfts in let sigma = gls.Evd.sigma in msg_notice (pr_evars_int sigma 1 (Evarutil.non_instantiated sigma)) let show_universes () = let pfts = get_pftreestate () in let gls = Proof.V82.subgoals pfts in let sigma = gls.Evd.sigma in let ctx = Evd.universe_context_set (Evd.nf_constraints sigma) in let cstrs = Univ.merge_constraints (Univ.ContextSet.constraints ctx) Univ.empty_universes in msg_notice (Evd.pr_evar_universe_context (Evd.evar_universe_context sigma)); msg_notice (str"Normalized constraints: " ++ Univ.pr_universes (Evd.pr_evd_level sigma) cstrs) let show_prooftree () = (* Spiwack: proof tree is currently not working *) () let enable_goal_printing = ref true let print_subgoals () = if !enable_goal_printing && is_verbose () then begin msg_notice (pr_open_subgoals ()) end let try_print_subgoals () = Pp.flush_all(); try print_subgoals () with Proof_global.NoCurrentProof | UserError _ -> () (* Simulate the Intro(s) tactic *) let show_intro all = let pf = get_pftreestate() in let {Evd.it=gls ; sigma=sigma; } = Proof.V82.subgoals pf in if not (List.is_empty gls) then begin let gl = {Evd.it=List.hd gls ; sigma = sigma; } in let l,_= decompose_prod_assum (strip_outer_cast (pf_concl gl)) in if all then let lid = Tactics.find_intro_names l gl in msg_notice (hov 0 (prlist_with_sep spc pr_id lid)) else if not (List.is_empty l) then let n = List.last l in msg_notice (pr_id (List.hd (Tactics.find_intro_names [n] gl))) end (** Prepare a "match" template for a given inductive type. For each branch of the match, we list the constructor name followed by enough pattern variables. [Not_found] is raised if the given string isn't the qualid of a known inductive type. *) let make_cases s = let qualified_name = Libnames.qualid_of_string s in let glob_ref = Nametab.locate qualified_name in match glob_ref with | Globnames.IndRef i -> let {Declarations.mind_nparams = np} , {Declarations.mind_consnames = carr ; Declarations.mind_nf_lc = tarr } = Global.lookup_inductive i in Util.Array.fold_right2 (fun consname typ l -> let al = List.rev (fst (decompose_prod typ)) in let al = Util.List.skipn np al in let rec rename avoid = function | [] -> [] | (n,_)::l -> let n' = Namegen.next_name_away_in_cases_pattern ([],mkMeta 0) n avoid in Id.to_string n' :: rename (n'::avoid) l in let al' = rename [] al in (Id.to_string consname :: al') :: l) carr tarr [] | _ -> raise Not_found (** Textual display of a generic "match" template *) let show_match id = let patterns = try make_cases (Id.to_string (snd id)) with Not_found -> error "Unknown inductive type." in let pr_branch l = str "| " ++ hov 1 (prlist_with_sep spc str l) ++ str " =>" in msg_notice (v 1 (str "match # with" ++ fnl () ++ prlist_with_sep fnl pr_branch patterns ++ fnl () ++ str "end" ++ fnl ())) (* "Print" commands *) let print_path_entry p = let dir = str (DirPath.to_string (Loadpath.logical p)) in let path = str (Loadpath.physical p) in (dir ++ str " " ++ tbrk (0, 0) ++ path) let print_loadpath dir = let l = Loadpath.get_load_paths () in let l = match dir with | None -> l | Some dir -> let filter p = is_dirpath_prefix_of dir (Loadpath.logical p) in List.filter filter l in Pp.t (str "Logical Path: " ++ tab () ++ str "Physical path:" ++ fnl () ++ prlist_with_sep fnl print_path_entry l) let print_modules () = let opened = Library.opened_libraries () and loaded = Library.loaded_libraries () in (* we intersect over opened to preserve the order of opened since *) (* non-commutative operations (e.g. visibility) are done at import time *) let loaded_opened = List.intersect DirPath.equal opened loaded and only_loaded = List.subtract DirPath.equal loaded opened in str"Loaded and imported library files: " ++ pr_vertical_list pr_dirpath loaded_opened ++ fnl () ++ str"Loaded and not imported library files: " ++ pr_vertical_list pr_dirpath only_loaded let print_module r = let (loc,qid) = qualid_of_reference r in try let globdir = Nametab.locate_dir qid in match globdir with DirModule (dirpath,(mp,_)) -> msg_notice (Printmod.print_module (Printmod.printable_body dirpath) mp) | _ -> raise Not_found with Not_found -> msg_error (str"Unknown Module " ++ pr_qualid qid) let print_modtype r = let (loc,qid) = qualid_of_reference r in try let kn = Nametab.locate_modtype qid in msg_notice (Printmod.print_modtype kn) with Not_found -> (* Is there a module of this name ? If yes we display its type *) try let mp = Nametab.locate_module qid in msg_notice (Printmod.print_module false mp) with Not_found -> msg_error (str"Unknown Module Type or Module " ++ pr_qualid qid) let print_namespace ns = let ns = List.rev (Names.DirPath.repr ns) in (* [match_dirpath], [match_modulpath] are helpers for [matches] which checks whether a constant is in the namespace [ns]. *) let rec match_dirpath ns = function | [] -> Some ns | id::dir -> begin match match_dirpath ns dir with | Some [] as y -> y | Some (a::ns') -> if Names.Id.equal a id then Some ns' else None | None -> None end in let rec match_modulepath ns = function | MPbound _ -> None (* Not a proper namespace. *) | MPfile dir -> match_dirpath ns (Names.DirPath.repr dir) | MPdot (mp,lbl) -> let id = Names.Label.to_id lbl in begin match match_modulepath ns mp with | Some [] as y -> y | Some (a::ns') -> if Names.Id.equal a id then Some ns' else None | None -> None end in (* [qualified_minus n mp] returns a list of qualifiers representing [mp] except the [n] first (in the concrete syntax order). The idea is that if [mp] matches [ns], then [qualified_minus mp (length ns)] will be the correct representation of [mp] assuming [ns] is imported. *) (* precondition: [mp] matches some namespace of length [n] *) let qualified_minus n mp = let rec list_of_modulepath = function | MPbound _ -> assert false (* MPbound never matches *) | MPfile dir -> Names.DirPath.repr dir | MPdot (mp,lbl) -> (Names.Label.to_id lbl)::(list_of_modulepath mp) in snd (Util.List.chop n (List.rev (list_of_modulepath mp))) in let print_list pr l = prlist_with_sep (fun () -> str".") pr l in let print_kn kn = (* spiwack: I'm ignoring the dirpath, is that bad? *) let (mp,_,lbl) = Names.repr_kn kn in let qn = (qualified_minus (List.length ns) mp)@[Names.Label.to_id lbl] in print_list pr_id qn in let print_constant k body = (* FIXME: universes *) let t = Typeops.type_of_constant_type (Global.env ()) body.Declarations.const_type in print_kn k ++ str":" ++ spc() ++ Printer.pr_type t in let matches mp = match match_modulepath ns mp with | Some [] -> true | _ -> false in let constants = (Environ.pre_env (Global.env ())).Pre_env.env_globals.Pre_env.env_constants in let constants_in_namespace = Cmap_env.fold (fun c (body,_) acc -> let kn = user_con c in if matches (modpath kn) then acc++fnl()++hov 2 (print_constant kn body) else acc ) constants (str"") in msg_notice ((print_list pr_id ns)++str":"++fnl()++constants_in_namespace) let print_strategy r = let open Conv_oracle in let pr_level = function | Expand -> str "expand" | Level 0 -> str "transparent" | Level n -> str "level" ++ spc() ++ int n | Opaque -> str "opaque" in let pr_strategy (ref, lvl) = pr_global ref ++ str " : " ++ pr_level lvl in let oracle = Environ.oracle (Global.env ()) in match r with | None -> let fold key lvl (vacc, cacc) = match key with | VarKey id -> ((VarRef id, lvl) :: vacc, cacc) | ConstKey cst -> (vacc, (ConstRef cst, lvl) :: cacc) | RelKey _ -> (vacc, cacc) in let var_lvl, cst_lvl = fold_strategy fold oracle ([], []) in let var_msg = if List.is_empty var_lvl then mt () else str "Variable strategies" ++ fnl () ++ hov 0 (prlist_with_sep fnl pr_strategy var_lvl) ++ fnl () in let cst_msg = if List.is_empty cst_lvl then mt () else str "Constant strategies" ++ fnl () ++ hov 0 (prlist_with_sep fnl pr_strategy cst_lvl) in msg_notice (var_msg ++ cst_msg) | Some r -> let r = Smartlocate.smart_global r in let key = match r with | VarRef id -> VarKey id | ConstRef cst -> ConstKey cst | IndRef _ | ConstructRef _ -> error "The reference is not unfoldable" in let lvl = get_strategy oracle key in msg_notice (pr_strategy (r, lvl)) let dump_universes_gen g s = let output = open_out s in let output_constraint, close = if Filename.check_suffix s ".dot" || Filename.check_suffix s ".gv" then begin (* the lazy unit is to handle errors while printing the first line *) let init = lazy (Printf.fprintf output "digraph universes {\n") in begin fun kind left right -> let () = Lazy.force init in match kind with | Univ.Lt -> Printf.fprintf output " \"%s\" -> \"%s\" [style=bold];\n" right left | Univ.Le -> Printf.fprintf output " \"%s\" -> \"%s\" [style=solid];\n" right left | Univ.Eq -> Printf.fprintf output " \"%s\" -> \"%s\" [style=dashed];\n" left right end, begin fun () -> if Lazy.lazy_is_val init then Printf.fprintf output "}\n"; close_out output end end else begin begin fun kind left right -> let kind = match kind with | Univ.Lt -> "<" | Univ.Le -> "<=" | Univ.Eq -> "=" in Printf.fprintf output "%s %s %s ;\n" left kind right end, (fun () -> close_out output) end in try Univ.dump_universes output_constraint g; close (); msg_info (str "Universes written to file \"" ++ str s ++ str "\".") with reraise -> let reraise = Errors.push reraise in close (); iraise reraise let dump_universes sorted s = let g = Global.universes () in let g = if sorted then Univ.sort_universes g else g in dump_universes_gen g s (*********************) (* "Locate" commands *) let locate_file f = let paths = Loadpath.get_paths () in let _, file = System.find_file_in_path ~warn:false paths f in str file let msg_found_library = function | Library.LibLoaded, fulldir, file -> msg_info (hov 0 (pr_dirpath fulldir ++ strbrk " has been loaded from file " ++ str file)) | Library.LibInPath, fulldir, file -> msg_info (hov 0 (pr_dirpath fulldir ++ strbrk " is bound to file " ++ str file)) let err_unmapped_library loc ?from qid = let dir = fst (repr_qualid qid) in let prefix = match from with | None -> str "." | Some from -> str " and prefix " ++ pr_dirpath from ++ str "." in user_err_loc (loc,"locate_library", strbrk "Cannot find a physical path bound to logical path matching suffix " ++ pr_dirpath dir ++ prefix) let err_notfound_library loc ?from qid = let prefix = match from with | None -> str "." | Some from -> str " with prefix " ++ pr_dirpath from ++ str "." in user_err_loc (loc,"locate_library", strbrk "Unable to locate library " ++ pr_qualid qid ++ prefix) let print_located_library r = let (loc,qid) = qualid_of_reference r in try msg_found_library (Library.locate_qualified_library ~warn:false qid) with | Library.LibUnmappedDir -> err_unmapped_library loc qid | Library.LibNotFound -> err_notfound_library loc qid let smart_global r = let gr = Smartlocate.smart_global r in Dumpglob.add_glob (Constrarg.loc_of_or_by_notation loc_of_reference r) gr; gr let dump_global r = try let gr = Smartlocate.smart_global r in Dumpglob.add_glob (Constrarg.loc_of_or_by_notation loc_of_reference r) gr with e when Errors.noncritical e -> () (**********) (* Syntax *) let vernac_syntax_extension locality local = let local = enforce_module_locality locality local in Metasyntax.add_syntax_extension local let vernac_delimiters = Metasyntax.add_delimiters let vernac_bind_scope sc cll = Metasyntax.add_class_scope sc (List.map scope_class_of_qualid cll) let vernac_open_close_scope locality local (b,s) = let local = enforce_section_locality locality local in Notation.open_close_scope (local,b,s) let vernac_arguments_scope locality r scl = let local = make_section_locality locality in Notation.declare_arguments_scope local (smart_global r) scl let vernac_infix locality local = let local = enforce_module_locality locality local in Metasyntax.add_infix local let vernac_notation locality local = let local = enforce_module_locality locality local in Metasyntax.add_notation local (***********) (* Gallina *) let start_proof_and_print k l hook = start_proof_com k l hook let no_hook = Lemmas.mk_hook (fun _ _ -> ()) let vernac_definition_hook p = function | Coercion -> Class.add_coercion_hook p | CanonicalStructure -> Lemmas.mk_hook (fun _ -> Recordops.declare_canonical_structure) | SubClass -> Class.add_subclass_hook p | _ -> no_hook let vernac_definition locality p (local,k) (loc,id as lid) def = let local = enforce_locality_exp locality local in let hook = vernac_definition_hook p k in let () = match local with | Discharge -> Dumpglob.dump_definition lid true "var" | Local | Global -> Dumpglob.dump_definition lid false "def" in (match def with | ProveBody (bl,t) -> (* local binders, typ *) start_proof_and_print (local,p,DefinitionBody Definition) [Some lid, (bl,t,None)] no_hook | DefineBody (bl,red_option,c,typ_opt) -> let red_option = match red_option with | None -> None | Some r -> let (evc,env)= get_current_context () in Some (snd (interp_redexp env evc r)) in do_definition id (local,p,k) bl red_option c typ_opt hook) let vernac_start_proof p kind l lettop = if Dumpglob.dump () then List.iter (fun (id, _) -> match id with | Some lid -> Dumpglob.dump_definition lid false "prf" | None -> ()) l; if not(refining ()) then if lettop then errorlabstrm "Vernacentries.StartProof" (str "Let declarations can only be used in proof editing mode."); start_proof_and_print (Global, p, Proof kind) l no_hook let qed_display_script = ref true let vernac_end_proof ?proof = function | Admitted -> save_proof ?proof Admitted | Proved (_,_) as e -> if is_verbose () && !qed_display_script && !Flags.coqtop_ui then Stm.show_script ?proof (); save_proof ?proof e (* A stupid macro that should be replaced by ``Exact c. Save.'' all along the theories [??] *) let vernac_exact_proof c = (* spiwack: for simplicity I do not enforce that "Proof proof_term" is called only at the begining of a proof. *) let status = by (Tactics.New.exact_proof c) in save_proof (Vernacexpr.(Proved(Opaque None,None))); if not status then Pp.feedback Feedback.AddedAxiom let vernac_assumption locality poly (local, kind) l nl = let local = enforce_locality_exp locality local in let global = local == Global in let kind = local, poly, kind in List.iter (fun (is_coe,(idl,c)) -> if Dumpglob.dump () then List.iter (fun lid -> if global then Dumpglob.dump_definition lid false "ax" else Dumpglob.dump_definition lid true "var") idl) l; let status = do_assumptions kind nl l in if not status then Pp.feedback Feedback.AddedAxiom let vernac_record chk k poly finite struc binders sort nameopt cfs = let const = match nameopt with | None -> add_prefix "Build_" (snd (snd struc)) | Some (_,id as lid) -> Dumpglob.dump_definition lid false "constr"; id in if Dumpglob.dump () then ( Dumpglob.dump_definition (snd struc) false "rec"; List.iter (fun (((_, x), _), _) -> match x with | Vernacexpr.AssumExpr ((loc, Name id), _) -> Dumpglob.dump_definition (loc,id) false "proj" | _ -> ()) cfs); ignore(Record.definition_structure chk (k,poly,finite,struc,binders,cfs,const,sort)) (** When [chk] is false, positivity is assumed. When [poly] is true the type is declared polymorphic. When [lo] is true, then the type is declared private (as per the [Private] keyword). [finite] indicates whether the type is inductive, co-inductive or neither. *) let vernac_inductive chk poly lo finite indl = if Dumpglob.dump () then List.iter (fun (((coe,lid), _, _, _, cstrs), _) -> match cstrs with | Constructors cstrs -> Dumpglob.dump_definition lid false "ind"; List.iter (fun (_, (lid, _)) -> Dumpglob.dump_definition lid false "constr") cstrs | _ -> () (* dumping is done by vernac_record (called below) *) ) indl; match indl with | [ ( _ , _ , _ ,Record, Constructors _ ),_ ] -> Errors.error "The Record keyword cannot be used to define a variant type. Use Variant instead." | [ (_ , _ , _ ,Variant, RecordDecl _),_ ] -> Errors.error "The Variant keyword cannot be used to define a record type. Use Record instead." | [ ( id , bl , c , b, RecordDecl (oc,fs) ), [] ] -> vernac_record chk (match b with Class true -> Class false | _ -> b) poly finite id bl c oc fs | [ ( id , bl , c , Class true, Constructors [l]), _ ] -> let f = let (coe, ((loc, id), ce)) = l in let coe' = if coe then Some true else None in (((coe', AssumExpr ((loc, Name id), ce)), None), []) in vernac_record chk (Class true) poly finite id bl c None [f] | [ ( id , bl , c , Class true, _), _ ] -> Errors.error "Definitional classes must have a single method" | [ ( id , bl , c , Class false, Constructors _), _ ] -> Errors.error "Inductive classes not supported" | [ ( _ , _ , _ , _, RecordDecl _ ) , _ ] -> Errors.error "where clause not supported for (co)inductive records" | _ -> let unpack = function | ( (false, id) , bl , c , _ , Constructors l ) , ntn -> ( id , bl , c , l ) , ntn | ( (true,_),_,_,_,Constructors _),_ -> Errors.error "Variant types do not handle the \"> Name\" syntax, which is reserved for records. Use the \":>\" syntax on constructors instead." | _ -> Errors.error "Cannot handle mutually (co)inductive records." in let indl = List.map unpack indl in do_mutual_inductive chk indl poly lo finite let vernac_fixpoint ~flags locality poly local l = let local = enforce_locality_exp locality local in if Dumpglob.dump () then List.iter (fun ((lid, _, _, _, _), _) -> Dumpglob.dump_definition lid false "def") l; do_fixpoint ~flags local poly l let vernac_cofixpoint ~flags locality poly local l = let local = enforce_locality_exp locality local in if Dumpglob.dump () then List.iter (fun ((lid, _, _, _), _) -> Dumpglob.dump_definition lid false "def") l; do_cofixpoint ~flags local poly l let vernac_scheme l = if Dumpglob.dump () then List.iter (fun (lid, s) -> Option.iter (fun lid -> Dumpglob.dump_definition lid false "def") lid; match s with | InductionScheme (_, r, _) | CaseScheme (_, r, _) | EqualityScheme r -> dump_global r) l; Indschemes.do_scheme l let vernac_combined_scheme lid l = if Dumpglob.dump () then (Dumpglob.dump_definition lid false "def"; List.iter (fun lid -> dump_global (Misctypes.AN (Ident lid))) l); Indschemes.do_combined_scheme lid l let vernac_universe l = do_universe l let vernac_constraint l = do_constraint l (**********************) (* Modules *) let vernac_import export refl = Library.import_module export (List.map qualid_of_reference refl); Lib.add_frozen_state () let vernac_declare_module export (loc, id) binders_ast mty_ast = (* We check the state of the system (in section, in module type) and what module information is supplied *) if Lib.sections_are_opened () then error "Modules and Module Types are not allowed inside sections."; let binders_ast = List.map (fun (export,idl,ty) -> if not (Option.is_empty export) then error "Arguments of a functor declaration cannot be exported. Remove the \"Export\" and \"Import\" keywords from every functor argument." else (idl,ty)) binders_ast in let mp = Declaremods.declare_module Modintern.interp_module_ast id binders_ast (Enforce mty_ast) [] in Dumpglob.dump_moddef loc mp "mod"; if_verbose msg_info (str "Module " ++ pr_id id ++ str " is declared"); Option.iter (fun export -> vernac_import export [Ident (Loc.ghost,id)]) export let vernac_define_module export (loc, id) binders_ast mty_ast_o mexpr_ast_l = (* We check the state of the system (in section, in module type) and what module information is supplied *) if Lib.sections_are_opened () then error "Modules and Module Types are not allowed inside sections."; match mexpr_ast_l with | [] -> check_no_pending_proofs (); let binders_ast,argsexport = List.fold_right (fun (export,idl,ty) (args,argsexport) -> (idl,ty)::args, (List.map (fun (_,i) -> export,i)idl)@argsexport) binders_ast ([],[]) in let mp = Declaremods.start_module Modintern.interp_module_ast export id binders_ast mty_ast_o in Dumpglob.dump_moddef loc mp "mod"; if_verbose msg_info (str "Interactive Module " ++ pr_id id ++ str " started"); List.iter (fun (export,id) -> Option.iter (fun export -> vernac_import export [Ident (Loc.ghost,id)]) export ) argsexport | _::_ -> let binders_ast = List.map (fun (export,idl,ty) -> if not (Option.is_empty export) then error "Arguments of a functor definition can be imported only if the definition is interactive. Remove the \"Export\" and \"Import\" keywords from every functor argument." else (idl,ty)) binders_ast in let mp = Declaremods.declare_module Modintern.interp_module_ast id binders_ast mty_ast_o mexpr_ast_l in Dumpglob.dump_moddef loc mp "mod"; if_verbose msg_info (str "Module " ++ pr_id id ++ str " is defined"); Option.iter (fun export -> vernac_import export [Ident (Loc.ghost,id)]) export let vernac_end_module export (loc,id as lid) = let mp = Declaremods.end_module () in Dumpglob.dump_modref loc mp "mod"; if_verbose msg_info (str "Module " ++ pr_id id ++ str " is defined"); Option.iter (fun export -> vernac_import export [Ident lid]) export let vernac_declare_module_type (loc,id) binders_ast mty_sign mty_ast_l = if Lib.sections_are_opened () then error "Modules and Module Types are not allowed inside sections."; match mty_ast_l with | [] -> check_no_pending_proofs (); let binders_ast,argsexport = List.fold_right (fun (export,idl,ty) (args,argsexport) -> (idl,ty)::args, (List.map (fun (_,i) -> export,i)idl)@argsexport) binders_ast ([],[]) in let mp = Declaremods.start_modtype Modintern.interp_module_ast id binders_ast mty_sign in Dumpglob.dump_moddef loc mp "modtype"; if_verbose msg_info (str "Interactive Module Type " ++ pr_id id ++ str " started"); List.iter (fun (export,id) -> Option.iter (fun export -> vernac_import export [Ident (Loc.ghost,id)]) export ) argsexport | _ :: _ -> let binders_ast = List.map (fun (export,idl,ty) -> if not (Option.is_empty export) then error "Arguments of a functor definition can be imported only if the definition is interactive. Remove the \"Export\" and \"Import\" keywords from every functor argument." else (idl,ty)) binders_ast in let mp = Declaremods.declare_modtype Modintern.interp_module_ast id binders_ast mty_sign mty_ast_l in Dumpglob.dump_moddef loc mp "modtype"; if_verbose msg_info (str "Module Type " ++ pr_id id ++ str " is defined") let vernac_end_modtype (loc,id) = let mp = Declaremods.end_modtype () in Dumpglob.dump_modref loc mp "modtype"; if_verbose msg_info (str "Module Type " ++ pr_id id ++ str " is defined") let vernac_include l = Declaremods.declare_include Modintern.interp_module_ast l (**********************) (* Gallina extensions *) (* Sections *) let vernac_begin_section (_, id as lid) = check_no_pending_proofs (); Dumpglob.dump_definition lid true "sec"; Lib.open_section id let vernac_end_section (loc,_) = Dumpglob.dump_reference loc (DirPath.to_string (Lib.current_dirpath true)) "<>" "sec"; Lib.close_section () let vernac_name_sec_hyp (_,id) set = Proof_using.name_set id set (* Dispatcher of the "End" command *) let vernac_end_segment (_,id as lid) = check_no_pending_proofs (); match Lib.find_opening_node id with | Lib.OpenedModule (false,export,_,_) -> vernac_end_module export lid | Lib.OpenedModule (true,_,_,_) -> vernac_end_modtype lid | Lib.OpenedSection _ -> vernac_end_section lid | _ -> assert false (* Libraries *) let vernac_require from import qidl = let qidl = List.map qualid_of_reference qidl in let root = match from with | None -> None | Some from -> let (_, qid) = Libnames.qualid_of_reference from in let (hd, tl) = Libnames.repr_qualid qid in Some (Libnames.add_dirpath_suffix hd tl) in let locate (loc, qid) = try let warn = Flags.is_verbose () in let (_, dir, f) = Library.locate_qualified_library ?root ~warn qid in (dir, f) with | Library.LibUnmappedDir -> err_unmapped_library loc ?from:root qid | Library.LibNotFound -> err_notfound_library loc ?from:root qid in let modrefl = List.map locate qidl in if Dumpglob.dump () then List.iter2 (fun (loc, _) dp -> Dumpglob.dump_libref loc dp "lib") qidl (List.map fst modrefl); Library.require_library_from_dirpath modrefl import (* Coercions and canonical structures *) let vernac_canonical r = Recordops.declare_canonical_structure (smart_global r) let vernac_coercion locality poly local ref qids qidt = let local = enforce_locality locality local in let target = cl_of_qualid qidt in let source = cl_of_qualid qids in let ref' = smart_global ref in Class.try_add_new_coercion_with_target ref' ~local poly ~source ~target; if_verbose msg_info (pr_global ref' ++ str " is now a coercion") let vernac_identity_coercion locality poly local id qids qidt = let local = enforce_locality locality local in let target = cl_of_qualid qidt in let source = cl_of_qualid qids in Class.try_add_new_identity_coercion id ~local poly ~source ~target (* Type classes *) let vernac_instance abst locality poly sup inst props pri = let global = not (make_section_locality locality) in Dumpglob.dump_constraint inst false "inst"; ignore(Classes.new_instance ~abstract:abst ~global poly sup inst props pri) let vernac_context poly l = if not (Classes.context poly l) then Pp.feedback Feedback.AddedAxiom let vernac_declare_instances locality ids pri = let glob = not (make_section_locality locality) in List.iter (fun id -> Classes.existing_instance glob id pri) ids let vernac_declare_class id = Record.declare_existing_class (Nametab.global id) (***********) (* Solving *) let command_focus = Proof.new_focus_kind () let focus_command_cond = Proof.no_cond command_focus let print_info_trace = ref None let _ = let open Goptions in declare_int_option { optsync = true; optdepr = false; optname = "print info trace"; optkey = ["Info" ; "Level"]; optread = (fun () -> !print_info_trace); optwrite = fun n -> print_info_trace := n; } let vernac_solve n info tcom b = if not (refining ()) then error "Unknown command of the non proof-editing mode."; let status = Proof_global.with_current_proof (fun etac p -> let with_end_tac = if b then Some etac else None in let global = match n with SelectAll -> true | _ -> false in let info = Option.append info !print_info_trace in let (p,status) = solve n info (Tacinterp.hide_interp global tcom None) ?with_end_tac p in (* in case a strict subtree was completed, go back to the top of the prooftree *) let p = Proof.maximal_unfocus command_focus p in p,status) in if not status then Pp.feedback Feedback.AddedAxiom (* A command which should be a tactic. It has been added by Christine to patch an error in the design of the proof machine, and enables to instantiate existential variables when there are no more goals to solve. It cannot be a tactic since all tactics fail if there are no further goals to prove. *) let vernac_solve_existential = instantiate_nth_evar_com let vernac_set_end_tac tac = if not (refining ()) then error "Unknown command of the non proof-editing mode."; match tac with | Tacexpr.TacId [] -> () | _ -> set_end_tac tac (* TO DO verifier s'il faut pas mettre exist s | TacId s ici*) let vernac_set_used_variables e = let env = Global.env () in let tys = List.map snd (Proof.initial_goals (Proof_global.give_me_the_proof ())) in let l = Proof_using.process_expr env e tys in let vars = Environ.named_context env in List.iter (fun id -> if not (List.exists (fun (id',_,_) -> Id.equal id id') vars) then errorlabstrm "vernac_set_used_variables" (str "Unknown variable: " ++ pr_id id)) l; let closure_l = List.map pi1 (set_used_variables l) in let closure_l = List.fold_right Id.Set.add closure_l Id.Set.empty in let vars_of = Environ.global_vars_set in let aux env entry (all_safe,rest as orig) = match entry with | (x,None,_) -> if Id.Set.mem x all_safe then orig else (all_safe, (Loc.ghost,x)::rest) | (x,Some bo, ty) -> let vars = Id.Set.union (vars_of env bo) (vars_of env ty) in if Id.Set.subset vars all_safe then (Id.Set.add x all_safe, rest) else (all_safe, (Loc.ghost,x) :: rest) in let _,to_clear = Environ.fold_named_context aux env ~init:(closure_l,[]) in vernac_solve SelectAll None Tacexpr.(TacAtom (Loc.ghost,TacClear(false,to_clear))) false (*****************************) (* Auxiliary file management *) let expand filename = Envars.expand_path_macros ~warn:(fun x -> msg_warning (str x)) filename let vernac_add_loadpath implicit pdir ldiropt = let pdir = expand pdir in let alias = Option.default Nameops.default_root_prefix ldiropt in Mltop.add_rec_path ~unix_path:pdir ~coq_root:alias ~implicit let vernac_remove_loadpath path = Loadpath.remove_load_path (expand path) (* Coq syntax for ML or system commands *) let vernac_add_ml_path isrec path = (if isrec then Mltop.add_rec_ml_dir else Mltop.add_ml_dir) (expand path) let vernac_declare_ml_module locality l = let local = make_locality locality in Mltop.declare_ml_modules local (List.map expand l) let vernac_chdir = function | None -> msg_notice (str (Sys.getcwd())) | Some path -> begin try Sys.chdir (expand path) with Sys_error err -> msg_warning (str "Cd failed: " ++ str err) end; if_verbose msg_info (str (Sys.getcwd())) (********************) (* State management *) let vernac_write_state file = Pfedit.delete_all_proofs (); States.extern_state file let vernac_restore_state file = Pfedit.delete_all_proofs (); States.intern_state file (************) (* Commands *) type tacdef_kind = | NewTac of Id.t | UpdateTac of Nametab.ltac_constant let is_defined_tac kn = try ignore (Tacenv.interp_ltac kn); true with Not_found -> false let make_absolute_name ident repl = let loc = loc_of_reference ident in if repl then let kn = try Nametab.locate_tactic (snd (qualid_of_reference ident)) with Not_found -> Errors.user_err_loc (loc, "", str "There is no Ltac named " ++ pr_reference ident ++ str ".") in UpdateTac kn else let id = Constrexpr_ops.coerce_reference_to_id ident in let kn = Lib.make_kn id in let () = if is_defined_tac kn then Errors.user_err_loc (loc, "", str "There is already an Ltac named " ++ pr_reference ident ++ str".") in let is_primitive = try match Pcoq.parse_string Pcoq.Tactic.tactic (Id.to_string id) with | Tacexpr.TacArg _ -> false | _ -> true (* most probably TacAtom, i.e. a primitive tactic ident *) with e when Errors.noncritical e -> true (* prim tactics with args, e.g. "apply" *) in let () = if is_primitive then msg_warning (str "The Ltac name " ++ pr_reference ident ++ str " may be unusable because of a conflict with a notation.") in NewTac id let register_ltac local isrec tacl = let map (ident, repl, body) = let name = make_absolute_name ident repl in (name, body) in let rfun = List.map map tacl in let recvars = let fold accu (op, _) = match op with | UpdateTac _ -> accu | NewTac id -> (Lib.make_path id, Lib.make_kn id) :: accu in if isrec then List.fold_left fold [] rfun else [] in let ist = Tacintern.make_empty_glob_sign () in let map (name, body) = let body = Flags.with_option Tacintern.strict_check (Tacintern.intern_tactic_or_tacarg ist) body in (name, body) in let defs () = (** Register locally the tactic to handle recursivity. This function affects the whole environment, so that we transactify it afterwards. *) let iter_rec (sp, kn) = Nametab.push_tactic (Nametab.Until 1) sp kn in let () = List.iter iter_rec recvars in List.map map rfun in let defs = Future.transactify defs () in let iter (def, tac) = match def with | NewTac id -> Tacenv.register_ltac false local id tac; Flags.if_verbose msg_info (Nameops.pr_id id ++ str " is defined") | UpdateTac kn -> Tacenv.redefine_ltac local kn tac; let name = Nametab.shortest_qualid_of_tactic kn in Flags.if_verbose msg_info (Libnames.pr_qualid name ++ str " is redefined") in List.iter iter defs let vernac_declare_tactic_definition locality (x,def) = let local = make_module_locality locality in register_ltac local x def let vernac_create_hintdb locality id b = let local = make_module_locality locality in Hints.create_hint_db local id full_transparent_state b let vernac_remove_hints locality dbs ids = let local = make_module_locality locality in Hints.remove_hints local dbs (List.map Smartlocate.global_with_alias ids) let vernac_hints locality poly local lb h = let local = enforce_module_locality locality local in Hints.add_hints local lb (Hints.interp_hints poly h) let vernac_syntactic_definition locality lid x local y = Dumpglob.dump_definition lid false "syndef"; let local = enforce_module_locality locality local in Metasyntax.add_syntactic_definition (snd lid) x local y let vernac_declare_implicits locality r l = let local = make_section_locality locality in match l with | [] -> Impargs.declare_implicits local (smart_global r) | _::_ as imps -> Impargs.declare_manual_implicits local (smart_global r) ~enriching:false (List.map (List.map (fun (ex,b,f) -> ex, (b,true,f))) imps) let vernac_declare_arguments locality r l nargs flags = let extra_scope_flag = List.mem `ExtraScopes flags in let names = List.map (List.map (fun (id, _,_,_,_) -> id)) l in let names, rest = List.hd names, List.tl names in let scopes = List.map (List.map (fun (_,_, s, _,_) -> s)) l in if List.exists (fun na -> not (List.equal Name.equal na names)) rest then error "All arguments lists must declare the same names."; if not (List.distinct_f Name.compare (List.filter ((!=) Anonymous) names)) then error "Arguments names must be distinct."; let sr = smart_global r in let inf_names = let ty = Global.type_of_global_unsafe sr in Impargs.compute_implicits_names (Global.env ()) ty in let rec check li ld ls = match li, ld, ls with | [], [], [] -> () | [], Anonymous::ld, (Some _)::ls when extra_scope_flag -> check li ld ls | [], _::_, (Some _)::ls when extra_scope_flag -> error "Extra notation scopes can be set on anonymous arguments only" | [], x::_, _ -> errorlabstrm "vernac_declare_arguments" (str "Extra argument " ++ pr_name x ++ str ".") | l, [], _ -> errorlabstrm "vernac_declare_arguments" (str "The following arguments are not declared: " ++ prlist_with_sep pr_comma pr_name l ++ str ".") | _::li, _::ld, _::ls -> check li ld ls | _ -> assert false in let () = match l with | [[]] -> () | _ -> List.iter2 (fun l -> check inf_names l) (names :: rest) scopes in (* we take extra scopes apart, and we check they are consistent *) let l, scopes = let scopes, rest = List.hd scopes, List.tl scopes in if List.exists (List.exists ((!=) None)) rest then error "Notation scopes can be given only once"; if not extra_scope_flag then l, scopes else let l, _ = List.split (List.map (List.chop (List.length inf_names)) l) in l, scopes in (* we interpret _ as the inferred names *) let l = match l with | [[]] -> l | _ -> let name_anons = function | (Anonymous, a,b,c,d), Name id -> Name id, a,b,c,d | x, _ -> x in List.map (fun ns -> List.map name_anons (List.combine ns inf_names)) l in let names_decl = List.map (List.map (fun (id, _,_,_,_) -> id)) l in let renamed_arg = ref None in let set_renamed a b = if Option.is_empty !renamed_arg && not (Id.equal a b) then renamed_arg := Some(b,a) in let some_renaming_specified = try let names = Arguments_renaming.arguments_names sr in not (List.equal (List.equal Name.equal) names names_decl) with Not_found -> false in let some_renaming_specified, implicits = match l with | [[]] -> false, [[]] | _ -> List.fold_map (fun sr il -> let sr', impl = List.fold_map (fun b -> function | (Anonymous, _,_, true, max), Name id -> assert false | (Name x, _,_, true, _), Anonymous -> errorlabstrm "vernac_declare_arguments" (str "Argument " ++ pr_id x ++ str " cannot be declared implicit.") | (Name iid, _,_, true, max), Name id -> set_renamed iid id; b || not (Id.equal iid id), Some (ExplByName id, max, false) | (Name iid, _,_, _, _), Name id -> set_renamed iid id; b || not (Id.equal iid id), None | _ -> b, None) sr (List.combine il inf_names) in sr || sr', List.map_filter (fun x -> x) impl) some_renaming_specified l in if some_renaming_specified then if not (List.mem `Rename flags) then errorlabstrm "vernac_declare_arguments" (str "To rename arguments the \"rename\" flag must be specified." ++ match !renamed_arg with | None -> mt () | Some (o,n) -> str "\nArgument " ++ pr_id o ++ str " renamed to " ++ pr_id n ++ str ".") else Arguments_renaming.rename_arguments (make_section_locality locality) sr names_decl; (* All other infos are in the first item of l *) let l = List.hd l in let some_implicits_specified = match implicits with | [[]] -> false | _ -> true in let scopes = List.map (function | None -> None | Some (o, k) -> try ignore (Notation.find_scope k); Some k with UserError _ -> Some (Notation.find_delimiters_scope o k)) scopes in let some_scopes_specified = List.exists ((!=) None) scopes in let rargs = Util.List.map_filter (function (n, true) -> Some n | _ -> None) (Util.List.map_i (fun i (_, b, _,_,_) -> i, b) 0 l) in if some_scopes_specified || List.mem `ClearScopes flags then vernac_arguments_scope locality r scopes; if not some_implicits_specified && List.mem `DefaultImplicits flags then vernac_declare_implicits locality r [] else if some_implicits_specified || List.mem `ClearImplicits flags then vernac_declare_implicits locality r implicits; if nargs >= 0 && nargs < List.fold_left max 0 rargs then error "The \"/\" option must be placed after the last \"!\"."; let no_flags = List.is_empty flags in let rec narrow = function | #Reductionops.ReductionBehaviour.flag as x :: tl -> x :: narrow tl | [] -> [] | _ :: tl -> narrow tl in let flags = narrow flags in let some_simpl_flags_specified = not (List.is_empty rargs) || nargs >= 0 || not (List.is_empty flags) in if some_simpl_flags_specified then begin match sr with | ConstRef _ as c -> Reductionops.ReductionBehaviour.set (make_section_locality locality) c (rargs, nargs, flags) | _ -> errorlabstrm "" (strbrk "Modifiers of the behavior of the simpl tactic are relevant for constants only.") end; if not (some_renaming_specified || some_implicits_specified || some_scopes_specified || some_simpl_flags_specified) && no_flags then msg_warning (strbrk "This command is just asserting the number and names of arguments of " ++ pr_global sr ++ strbrk". If this is what you want add ': assert' to silence the warning. If you want to clear implicit arguments add ': clear implicits'. If you want to clear notation scopes add ': clear scopes'") let default_env () = { Notation_term.ninterp_var_type = Id.Map.empty; ninterp_rec_vars = Id.Map.empty; ninterp_only_parse = false; } let vernac_reserve bl = let sb_decl = (fun (idl,c) -> let env = Global.env() in let t,ctx = Constrintern.interp_type env Evd.empty c in let t = Detyping.detype false [] env Evd.empty t in let t = Notation_ops.notation_constr_of_glob_constr (default_env ()) t in Reserve.declare_reserved_type idl t) in List.iter sb_decl bl let vernac_generalizable locality = let local = make_non_locality locality in Implicit_quantifiers.declare_generalizable local let _ = declare_bool_option { optsync = false; optdepr = false; optname = "silent"; optkey = ["Silent"]; optread = is_silent; optwrite = make_silent } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "implicit arguments"; optkey = ["Implicit";"Arguments"]; optread = Impargs.is_implicit_args; optwrite = Impargs.make_implicit_args } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "strict implicit arguments"; optkey = ["Strict";"Implicit"]; optread = Impargs.is_strict_implicit_args; optwrite = Impargs.make_strict_implicit_args } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "strong strict implicit arguments"; optkey = ["Strongly";"Strict";"Implicit"]; optread = Impargs.is_strongly_strict_implicit_args; optwrite = Impargs.make_strongly_strict_implicit_args } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "contextual implicit arguments"; optkey = ["Contextual";"Implicit"]; optread = Impargs.is_contextual_implicit_args; optwrite = Impargs.make_contextual_implicit_args } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "implicit status of reversible patterns"; optkey = ["Reversible";"Pattern";"Implicit"]; optread = Impargs.is_reversible_pattern_implicit_args; optwrite = Impargs.make_reversible_pattern_implicit_args } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "maximal insertion of implicit"; optkey = ["Maximal";"Implicit";"Insertion"]; optread = Impargs.is_maximal_implicit_args; optwrite = Impargs.make_maximal_implicit_args } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "automatic introduction of variables"; optkey = ["Automatic";"Introduction"]; optread = Flags.is_auto_intros; optwrite = make_auto_intros } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "coercion printing"; optkey = ["Printing";"Coercions"]; optread = (fun () -> !Constrextern.print_coercions); optwrite = (fun b -> Constrextern.print_coercions := b) } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "printing of existential variable instances"; optkey = ["Printing";"Existential";"Instances"]; optread = (fun () -> !Detyping.print_evar_arguments); optwrite = (:=) Detyping.print_evar_arguments } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "implicit arguments printing"; optkey = ["Printing";"Implicit"]; optread = (fun () -> !Constrextern.print_implicits); optwrite = (fun b -> Constrextern.print_implicits := b) } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "implicit arguments defensive printing"; optkey = ["Printing";"Implicit";"Defensive"]; optread = (fun () -> !Constrextern.print_implicits_defensive); optwrite = (fun b -> Constrextern.print_implicits_defensive := b) } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "projection printing using dot notation"; optkey = ["Printing";"Projections"]; optread = (fun () -> !Constrextern.print_projections); optwrite = (fun b -> Constrextern.print_projections := b) } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "notations printing"; optkey = ["Printing";"Notations"]; optread = (fun () -> not !Constrextern.print_no_symbol); optwrite = (fun b -> Constrextern.print_no_symbol := not b) } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "raw printing"; optkey = ["Printing";"All"]; optread = (fun () -> !Flags.raw_print); optwrite = (fun b -> Flags.raw_print := b) } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "record printing"; optkey = ["Printing";"Records"]; optread = (fun () -> !Flags.record_print); optwrite = (fun b -> Flags.record_print := b) } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "use of the program extension"; optkey = ["Program";"Mode"]; optread = (fun () -> !Flags.program_mode); optwrite = (fun b -> Flags.program_mode:=b) } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "universe polymorphism"; optkey = ["Universe"; "Polymorphism"]; optread = Flags.is_universe_polymorphism; optwrite = Flags.make_universe_polymorphism } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "use of virtual machine inside the kernel"; optkey = ["Virtual";"Machine"]; optread = (fun () -> Vconv.use_vm ()); optwrite = (fun b -> Vconv.set_use_vm b) } let _ = declare_int_option { optsync = true; optdepr = false; optname = "the level of inling duging functor application"; optkey = ["Inline";"Level"]; optread = (fun () -> Some (Flags.get_inline_level ())); optwrite = (fun o -> let lev = Option.default Flags.default_inline_level o in Flags.set_inline_level lev) } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "kernel term sharing"; optkey = ["Kernel"; "Term"; "Sharing"]; optread = (fun () -> !Closure.share); optwrite = (fun b -> Closure.share := b) } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "use of boxed values"; optkey = ["Boxed";"Values"]; optread = (fun _ -> not (Vm.transp_values ())); optwrite = (fun b -> Vm.set_transp_values (not b)) } (* No more undo limit in the new proof engine. The command still exists for compatibility (e.g. with ProofGeneral) *) let _ = declare_int_option { optsync = false; optdepr = true; optname = "the undo limit (OBSOLETE)"; optkey = ["Undo"]; optread = (fun _ -> None); optwrite = (fun _ -> ()) } let _ = declare_int_option { optsync = false; optdepr = false; optname = "the hypotheses limit"; optkey = ["Hyps";"Limit"]; optread = Flags.print_hyps_limit; optwrite = Flags.set_print_hyps_limit } let _ = declare_int_option { optsync = true; optdepr = false; optname = "the printing depth"; optkey = ["Printing";"Depth"]; optread = Pp_control.get_depth_boxes; optwrite = Pp_control.set_depth_boxes } let _ = declare_int_option { optsync = true; optdepr = false; optname = "the printing width"; optkey = ["Printing";"Width"]; optread = Pp_control.get_margin; optwrite = Pp_control.set_margin } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "dumping bytecode after compilation"; optkey = ["Dump";"Bytecode"]; optread = Flags.get_dump_bytecode; optwrite = Flags.set_dump_bytecode } let vernac_debug b = set_debug (if b then Tactic_debug.DebugOn 0 else Tactic_debug.DebugOff) let _ = declare_bool_option { optsync = false; optdepr = false; optname = "Ltac debug"; optkey = ["Ltac";"Debug"]; optread = (fun () -> get_debug () != Tactic_debug.DebugOff); optwrite = vernac_debug } let _ = declare_bool_option { optsync = true; optdepr = false; optname = "explicitly parsing implicit arguments"; optkey = ["Parsing";"Explicit"]; optread = (fun () -> !Constrintern.parsing_explicit); optwrite = (fun b -> Constrintern.parsing_explicit := b) } let vernac_set_strategy locality l = let local = make_locality locality in let glob_ref r = match smart_global r with | ConstRef sp -> EvalConstRef sp | VarRef id -> EvalVarRef id | _ -> error "cannot set an inductive type or a constructor as transparent" in let l = List.map (fun (lev,ql) -> (lev,List.map glob_ref ql)) l in Redexpr.set_strategy local l let vernac_set_opacity locality (v,l) = let local = make_non_locality locality in let glob_ref r = match smart_global r with | ConstRef sp -> EvalConstRef sp | VarRef id -> EvalVarRef id | _ -> error "cannot set an inductive type or a constructor as transparent" in let l = List.map glob_ref l in Redexpr.set_strategy local [v,l] let vernac_set_option locality key = function | StringValue s -> set_string_option_value_gen locality key s | IntValue n -> set_int_option_value_gen locality key n | BoolValue b -> set_bool_option_value_gen locality key b let vernac_unset_option locality key = unset_option_value_gen locality key let vernac_add_option key lv = let f = function | StringRefValue s -> (get_string_table key)#add s | QualidRefValue locqid -> (get_ref_table key)#add locqid in try List.iter f lv with Not_found -> error_undeclared_key key let vernac_remove_option key lv = let f = function | StringRefValue s -> (get_string_table key)#remove s | QualidRefValue locqid -> (get_ref_table key)#remove locqid in try List.iter f lv with Not_found -> error_undeclared_key key let vernac_mem_option key lv = let f = function | StringRefValue s -> (get_string_table key)#mem s | QualidRefValue locqid -> (get_ref_table key)#mem locqid in try List.iter f lv with Not_found -> error_undeclared_key key let vernac_print_option key = try (get_ref_table key)#print with Not_found -> try (get_string_table key)#print with Not_found -> try print_option_value key with Not_found -> error_undeclared_key key let get_current_context_of_args = function | Some n -> get_goal_context n | None -> get_current_context () let vernac_check_may_eval redexp glopt rc = let (sigma, env) = get_current_context_of_args glopt in let sigma', c = interp_open_constr env sigma rc in let sigma' = Evarconv.consider_remaining_unif_problems env sigma' in Evarconv.check_problems_are_solved env sigma'; let sigma',nf = Evarutil.nf_evars_and_universes sigma' in let uctx = Evd.universe_context sigma' in let env = Environ.push_context uctx (Evarutil.nf_env_evar sigma' env) in let c = nf c in let j = if Evarutil.has_undefined_evars sigma' c then Evarutil.j_nf_evar sigma' (Retyping.get_judgment_of env sigma' c) else (* OK to call kernel which does not support evars *) Arguments_renaming.rename_typing env c in match redexp with | None -> let l = Evar.Set.union (Evd.evars_of_term j.Environ.uj_val) (Evd.evars_of_term j.Environ.uj_type) in let j = { j with Environ.uj_type = Reductionops.nf_betaiota sigma' j.Environ.uj_type } in msg_notice (print_judgment env sigma' j ++ pr_ne_evar_set (fnl () ++ str "where" ++ fnl ()) (mt ()) sigma' l ++ Printer.pr_universe_ctx uctx) | Some r -> Tacintern.dump_glob_red_expr r; let (sigma',r_interp) = interp_redexp env sigma' r in let redfun env evm c = snd (fst (reduction_of_red_expr env r_interp) env evm c) in msg_notice (print_eval redfun env sigma' rc j) let vernac_declare_reduction locality s r = let local = make_locality locality in declare_red_expr local s (snd (interp_redexp (Global.env()) Evd.empty r)) (* The same but avoiding the current goal context if any *) let vernac_global_check c = let env = Global.env() in let sigma = Evd.from_env env in let c,ctx = interp_constr env sigma c in let senv = Global.safe_env() in let cstrs = snd (Evd.evar_universe_context_set Univ.UContext.empty ctx) in let senv = Safe_typing.add_constraints cstrs senv in let j = Safe_typing.typing senv c in let env = Safe_typing.env_of_safe_env senv in msg_notice (print_safe_judgment env sigma j) let get_nth_goal n = let pf = get_pftreestate() in let {Evd.it=gls ; sigma=sigma; } = Proof.V82.subgoals pf in let gl = {Evd.it=List.nth gls (n-1) ; sigma = sigma; } in gl exception NoHyp (* Printing "About" information of a hypothesis of the current goal. We only print the type and a small statement to this comes from the goal. Precondition: there must be at least one current goal. *) let print_about_hyp_globs ref_or_by_not glnumopt = try let gl,id = match glnumopt,ref_or_by_not with | None,AN (Ident (_loc,id)) -> (* goal number not given, catch any failure *) (try get_nth_goal 1,id with _ -> raise NoHyp) | Some n,AN (Ident (_loc,id)) -> (* goal number given, catch if wong *) (try get_nth_goal n,id with Failure _ -> errorlabstrm "print_about_hyp_globs" (str "No such goal: " ++ int n ++ str ".")) | _ , _ -> raise NoHyp in let hyps = pf_hyps gl in let (id,bdyopt,typ) = Context.lookup_named id hyps in let natureofid = match bdyopt with | None -> "Hypothesis" | Some bdy ->"Constant (let in)" in v 0 (str (Id.to_string id) ++ str":" ++ pr_constr typ ++ fnl() ++ fnl() ++ str natureofid ++ str " of the goal context.") with (* fallback to globals *) | NoHyp | Not_found -> print_about ref_or_by_not let vernac_print = function | PrintTables -> msg_notice (print_tables ()) | PrintFullContext-> msg_notice (print_full_context_typ ()) | PrintSectionContext qid -> msg_notice (print_sec_context_typ qid) | PrintInspect n -> msg_notice (inspect n) | PrintGrammar ent -> msg_notice (Metasyntax.pr_grammar ent) | PrintLoadPath dir -> (* For compatibility ? *) msg_notice (print_loadpath dir) | PrintModules -> msg_notice (print_modules ()) | PrintModule qid -> print_module qid | PrintModuleType qid -> print_modtype qid | PrintNamespace ns -> print_namespace ns | PrintMLLoadPath -> msg_notice (Mltop.print_ml_path ()) | PrintMLModules -> msg_notice (Mltop.print_ml_modules ()) | PrintDebugGC -> msg_notice (Mltop.print_gc ()) | PrintName qid -> dump_global qid; msg_notice (print_name qid) | PrintGraph -> msg_notice (Prettyp.print_graph()) | PrintClasses -> msg_notice (Prettyp.print_classes()) | PrintTypeClasses -> msg_notice (Prettyp.print_typeclasses()) | PrintInstances c -> msg_notice (Prettyp.print_instances (smart_global c)) | PrintLtac qid -> msg_notice (Tacintern.print_ltac (snd (qualid_of_reference qid))) | PrintCoercions -> msg_notice (Prettyp.print_coercions()) | PrintCoercionPaths (cls,clt) -> msg_notice (Prettyp.print_path_between (cl_of_qualid cls) (cl_of_qualid clt)) | PrintCanonicalConversions -> msg_notice (Prettyp.print_canonical_projections ()) | PrintUniverses (b, None) -> let univ = Global.universes () in let univ = if b then Univ.sort_universes univ else univ in let pr_remaining = if Global.is_joined_environment () then mt () else str"There may remain asynchronous universe constraints" in msg_notice (Univ.pr_universes Universes.pr_with_global_universes univ ++ pr_remaining) | PrintUniverses (b, Some s) -> dump_universes b s | PrintHint r -> msg_notice (Hints.pr_hint_ref (smart_global r)) | PrintHintGoal -> msg_notice (Hints.pr_applicable_hint ()) | PrintHintDbName s -> msg_notice (Hints.pr_hint_db_by_name s) | PrintRewriteHintDbName s -> msg_notice (Autorewrite.print_rewrite_hintdb s) | PrintHintDb -> msg_notice (Hints.pr_searchtable ()) | PrintScopes -> msg_notice (Notation.pr_scopes (Constrextern.without_symbols pr_lglob_constr)) | PrintScope s -> msg_notice (Notation.pr_scope (Constrextern.without_symbols pr_lglob_constr) s) | PrintVisibility s -> msg_notice (Notation.pr_visibility (Constrextern.without_symbols pr_lglob_constr) s) | PrintAbout (ref_or_by_not,glnumopt) -> msg_notice (print_about_hyp_globs ref_or_by_not glnumopt) | PrintImplicit qid -> dump_global qid; msg_notice (print_impargs qid) | PrintAssumptions (o,t,r) -> (* Prints all the axioms and section variables used by a term *) let cstr = printable_constr_of_global (smart_global r) in let st = Conv_oracle.get_transp_state (Environ.oracle (Global.env())) in let nassums = Assumptions.assumptions st ~add_opaque:o ~add_transparent:t cstr in msg_notice (Printer.pr_assumptionset (Global.env ()) nassums) | PrintStrategy r -> print_strategy r let global_module r = let (loc,qid) = qualid_of_reference r in try Nametab.full_name_module qid with Not_found -> user_err_loc (loc, "global_module", str "Module/section " ++ pr_qualid qid ++ str " not found.") let interp_search_restriction = function | SearchOutside l -> (List.map global_module l, true) | SearchInside l -> (List.map global_module l, false) open Search let interp_search_about_item env = function | SearchSubPattern pat -> let _,pat = intern_constr_pattern env pat in GlobSearchSubPattern pat | SearchString (s,None) when Id.is_valid s -> GlobSearchString s | SearchString (s,sc) -> try let ref = Notation.interp_notation_as_global_reference Loc.ghost (fun _ -> true) s sc in GlobSearchSubPattern (Pattern.PRef ref) with UserError _ -> errorlabstrm "interp_search_about_item" (str "Unable to interp \"" ++ str s ++ str "\" either as a reference or as an identifier component") let vernac_search s gopt r = let r = interp_search_restriction r in let env,gopt = match gopt with | None -> (* 1st goal by default if it exists, otherwise no goal at all *) (try snd (Pfedit.get_goal_context 1) , Some 1 with _ -> Global.env (),None) (* if goal selector is given and wrong, then let exceptions be raised. *) | Some g -> snd (Pfedit.get_goal_context g) , Some g in let get_pattern c = snd (intern_constr_pattern env c) in match s with | SearchPattern c -> msg_notice (Search.search_pattern gopt (get_pattern c) r) | SearchRewrite c -> msg_notice (Search.search_rewrite gopt (get_pattern c) r) | SearchHead c -> msg_notice (Search.search_by_head gopt (get_pattern c) r) | SearchAbout sl -> msg_notice (Search.search_about gopt (List.map (on_snd (interp_search_about_item env)) sl) r) let vernac_locate = function | LocateAny (AN qid) -> msg_notice (print_located_qualid qid) | LocateTerm (AN qid) -> msg_notice (print_located_term qid) | LocateAny (ByNotation (_, ntn, sc)) (** TODO : handle Ltac notations *) | LocateTerm (ByNotation (_, ntn, sc)) -> msg_notice (Notation.locate_notation (Constrextern.without_symbols pr_lglob_constr) ntn sc) | LocateLibrary qid -> print_located_library qid | LocateModule qid -> msg_notice (print_located_module qid) | LocateTactic qid -> msg_notice (print_located_tactic qid) | LocateFile f -> msg_notice (locate_file f) let vernac_register id r = if Pfedit.refining () then error "Cannot register a primitive while in proof editing mode."; let t = (Constrintern.global_reference (snd id)) in if not (isConst t) then error "Register inline: a constant is expected"; let kn = destConst t in match r with | RegisterInline -> Global.register_inline (Univ.out_punivs kn) (********************) (* Proof management *) let vernac_focus gln = Proof_global.simple_with_current_proof (fun _ p -> match gln with | None -> Proof.focus focus_command_cond () 1 p | Some 0 -> Errors.error "Invalid goal number: 0. Goal numbering starts with 1." | Some n -> Proof.focus focus_command_cond () n p) (* Unfocuses one step in the focus stack. *) let vernac_unfocus () = Proof_global.simple_with_current_proof (fun _ p -> Proof.unfocus command_focus p ()) (* Checks that a proof is fully unfocused. Raises an error if not. *) let vernac_unfocused () = let p = Proof_global.give_me_the_proof () in if Proof.unfocused p then msg_notice (str"The proof is indeed fully unfocused.") else error "The proof is not fully unfocused." (* BeginSubproof / EndSubproof. BeginSubproof (vernac_subproof) focuses on the first goal, or the goal given as argument. EndSubproof (vernac_end_subproof) unfocuses from a BeginSubproof, provided that the proof of the goal has been completed. *) let subproof_kind = Proof.new_focus_kind () let subproof_cond = Proof.done_cond subproof_kind let vernac_subproof gln = Proof_global.simple_with_current_proof (fun _ p -> match gln with | None -> Proof.focus subproof_cond () 1 p | Some n -> Proof.focus subproof_cond () n p) let vernac_end_subproof () = Proof_global.simple_with_current_proof (fun _ p -> Proof.unfocus subproof_kind p ()) let vernac_bullet (bullet:Proof_global.Bullet.t) = Proof_global.simple_with_current_proof (fun _ p -> Proof_global.Bullet.put p bullet) let vernac_show = function | ShowGoal goalref -> let info = match goalref with | OpenSubgoals -> pr_open_subgoals () | NthGoal n -> pr_nth_open_subgoal n | GoalId id -> pr_goal_by_id id in msg_notice info | ShowGoalImplicitly None -> Constrextern.with_implicits msg_notice (pr_open_subgoals ()) | ShowGoalImplicitly (Some n) -> Constrextern.with_implicits msg_notice (pr_nth_open_subgoal n) | ShowProof -> show_proof () | ShowNode -> show_node () | ShowScript -> Stm.show_script () | ShowExistentials -> show_top_evars () | ShowUniverses -> show_universes () | ShowTree -> show_prooftree () | ShowProofNames -> msg_notice (pr_sequence pr_id (Pfedit.get_all_proof_names())) | ShowIntros all -> show_intro all | ShowMatch id -> show_match id | ShowThesis -> show_thesis () let vernac_check_guard () = let pts = get_pftreestate () in let pfterm = List.hd (Proof.partial_proof pts) in let message = try let { Evd.it=gl ; sigma=sigma } = Proof.V82.top_goal pts in Inductiveops.control_only_guard (Goal.V82.env sigma gl) pfterm; (str "The condition holds up to here") with UserError(_,s) -> (str ("Condition violated: ") ++s) in msg_notice message exception End_of_input let vernac_load interp fname = let parse_sentence = Flags.with_option Flags.we_are_parsing (fun po -> match Pcoq.Gram.entry_parse Pcoq.main_entry po with | Some x -> x | None -> raise End_of_input) in let open_utf8_file_in fname = let is_bom s = Int.equal (Char.code s.[0]) 0xEF && Int.equal (Char.code s.[1]) 0xBB && Int.equal (Char.code s.[2]) 0xBF in let in_chan = open_in fname in let s = " " in if input in_chan s 0 3 < 3 || not (is_bom s) then seek_in in_chan 0; in_chan in let fname = Envars.expand_path_macros ~warn:(fun x -> msg_warning (str x)) fname in let fname = CUnix.make_suffix fname ".v" in let input = let paths = Loadpath.get_paths () in let _,longfname = System.find_file_in_path ~warn:(Flags.is_verbose()) paths fname in let in_chan = open_utf8_file_in longfname in Pcoq.Gram.parsable (Stream.of_channel in_chan) in try while true do interp (snd (parse_sentence input)) done with End_of_input -> () (* "locality" is the prefix "Local" attribute, while the "local" component * is the outdated/deprecated "Local" attribute of some vernacular commands * still parsed as the obsolete_locality grammar entry for retrocompatibility *) let interp ?proof locality poly c = prerr_endline ("interpreting: " ^ Pp.string_of_ppcmds (Ppvernac.pr_vernac c)); match c with (* Done later in this file *) | VernacLoad _ -> assert false | VernacFail _ -> assert false | VernacTime _ -> assert false | VernacRedirect _ -> assert false | VernacTimeout _ -> assert false | VernacStm _ -> assert false | VernacError e -> raise e (* Syntax *) | VernacTacticNotation (n,r,e) -> Metasyntax.add_tactic_notation (make_module_locality locality,n,r,e) | VernacSyntaxExtension (local,sl) -> vernac_syntax_extension locality local sl | VernacDelimiters (sc,lr) -> vernac_delimiters sc lr | VernacBindScope (sc,rl) -> vernac_bind_scope sc rl | VernacOpenCloseScope (local, s) -> vernac_open_close_scope locality local s | VernacArgumentsScope (qid,scl) -> vernac_arguments_scope locality qid scl | VernacInfix (local,mv,qid,sc) -> vernac_infix locality local mv qid sc | VernacNotation (local,c,infpl,sc) -> vernac_notation locality local c infpl sc | VernacNotationAddFormat(n,k,v) -> Metasyntax.add_notation_extra_printing_rule n k v (* Gallina *) | VernacDefinition (k,lid,d) -> vernac_definition locality poly k lid d | VernacStartTheoremProof (k,l,top) -> vernac_start_proof poly k l top | VernacEndProof e -> vernac_end_proof ?proof e | VernacExactProof c -> vernac_exact_proof c | VernacAssumption (stre,nl,l) -> vernac_assumption locality poly stre l nl | VernacInductive (chk,priv,finite,l) -> vernac_inductive chk poly priv finite l | VernacFixpoint (flags,local, l) -> vernac_fixpoint ~flags locality poly local l | VernacCoFixpoint (flags,local, l) -> vernac_cofixpoint ~flags locality poly local l | VernacScheme l -> vernac_scheme l | VernacCombinedScheme (id, l) -> vernac_combined_scheme id l | VernacUniverse l -> vernac_universe l | VernacConstraint l -> vernac_constraint l (* Modules *) | VernacDeclareModule (export,lid,bl,mtyo) -> vernac_declare_module export lid bl mtyo | VernacDefineModule (export,lid,bl,mtys,mexprl) -> vernac_define_module export lid bl mtys mexprl | VernacDeclareModuleType (lid,bl,mtys,mtyo) -> vernac_declare_module_type lid bl mtys mtyo | VernacInclude in_asts -> vernac_include in_asts (* Gallina extensions *) | VernacBeginSection lid -> vernac_begin_section lid | VernacEndSegment lid -> vernac_end_segment lid | VernacNameSectionHypSet (lid, set) -> vernac_name_sec_hyp lid set | VernacRequire (from, export, qidl) -> vernac_require from export qidl | VernacImport (export,qidl) -> vernac_import export qidl | VernacCanonical qid -> vernac_canonical qid | VernacCoercion (local,r,s,t) -> vernac_coercion locality poly local r s t | VernacIdentityCoercion (local,(_,id),s,t) -> vernac_identity_coercion locality poly local id s t (* Type classes *) | VernacInstance (abst, sup, inst, props, pri) -> vernac_instance abst locality poly sup inst props pri | VernacContext sup -> vernac_context poly sup | VernacDeclareInstances (ids, pri) -> vernac_declare_instances locality ids pri | VernacDeclareClass id -> vernac_declare_class id (* Solving *) | VernacSolve (n,info,tac,b) -> vernac_solve n info tac b | VernacSolveExistential (n,c) -> vernac_solve_existential n c (* Auxiliary file and library management *) | VernacAddLoadPath (isrec,s,alias) -> vernac_add_loadpath isrec s alias | VernacRemoveLoadPath s -> vernac_remove_loadpath s | VernacAddMLPath (isrec,s) -> vernac_add_ml_path isrec s | VernacDeclareMLModule l -> vernac_declare_ml_module locality l | VernacChdir s -> vernac_chdir s (* State management *) | VernacWriteState s -> vernac_write_state s | VernacRestoreState s -> vernac_restore_state s (* Resetting *) | VernacResetName _ -> anomaly (str "VernacResetName not handled by Stm") | VernacResetInitial -> anomaly (str "VernacResetInitial not handled by Stm") | VernacBack _ -> anomaly (str "VernacBack not handled by Stm") | VernacBackTo _ -> anomaly (str "VernacBackTo not handled by Stm") (* Commands *) | VernacDeclareTacticDefinition def -> vernac_declare_tactic_definition locality def | VernacCreateHintDb (dbname,b) -> vernac_create_hintdb locality dbname b | VernacRemoveHints (dbnames,ids) -> vernac_remove_hints locality dbnames ids | VernacHints (local,dbnames,hints) -> vernac_hints locality poly local dbnames hints | VernacSyntacticDefinition (id,c,local,b) -> vernac_syntactic_definition locality id c local b | VernacDeclareImplicits (qid,l) -> vernac_declare_implicits locality qid l | VernacArguments (qid, l, narg, flags) -> vernac_declare_arguments locality qid l narg flags | VernacReserve bl -> vernac_reserve bl | VernacGeneralizable gen -> vernac_generalizable locality gen | VernacSetOpacity qidl -> vernac_set_opacity locality qidl | VernacSetStrategy l -> vernac_set_strategy locality l | VernacSetOption (key,v) -> vernac_set_option locality key v | VernacUnsetOption key -> vernac_unset_option locality key | VernacRemoveOption (key,v) -> vernac_remove_option key v | VernacAddOption (key,v) -> vernac_add_option key v | VernacMemOption (key,v) -> vernac_mem_option key v | VernacPrintOption key -> vernac_print_option key | VernacCheckMayEval (r,g,c) -> vernac_check_may_eval r g c | VernacDeclareReduction (s,r) -> vernac_declare_reduction locality s r | VernacGlobalCheck c -> vernac_global_check c | VernacPrint p -> vernac_print p | VernacSearch (s,g,r) -> vernac_search s g r | VernacLocate l -> vernac_locate l | VernacRegister (id, r) -> vernac_register id r | VernacComments l -> if_verbose msg_info (str "Comments ok\n") | VernacNop -> () (* The STM should handle that, but LOAD bypasses the STM... *) | VernacAbort id -> msg_warning (str "VernacAbort not handled by Stm") | VernacAbortAll -> msg_warning (str "VernacAbortAll not handled by Stm") | VernacRestart -> msg_warning (str "VernacRestart not handled by Stm") | VernacUndo _ -> msg_warning (str "VernacUndo not handled by Stm") | VernacUndoTo _ -> msg_warning (str "VernacUndoTo not handled by Stm") | VernacBacktrack _ -> msg_warning (str "VernacBacktrack not handled by Stm") (* Proof management *) | VernacGoal t -> vernac_start_proof poly Theorem [None,([],t,None)] false | VernacFocus n -> vernac_focus n | VernacUnfocus -> vernac_unfocus () | VernacUnfocused -> vernac_unfocused () | VernacBullet b -> vernac_bullet b | VernacSubproof n -> vernac_subproof n | VernacEndSubproof -> vernac_end_subproof () | VernacShow s -> vernac_show s | VernacCheckGuard -> vernac_check_guard () | VernacProof (None, None) -> () | VernacProof (Some tac, None) -> vernac_set_end_tac tac | VernacProof (None, Some l) -> vernac_set_used_variables l | VernacProof (Some tac, Some l) -> vernac_set_end_tac tac; vernac_set_used_variables l | VernacProofMode mn -> Proof_global.set_proof_mode mn (* Toplevel control *) | VernacToplevelControl e -> raise e (* Extensions *) | VernacExtend (opn,args) -> Vernacinterp.call ?locality (opn,args) (* Handled elsewhere *) | VernacProgram _ | VernacPolymorphic _ | VernacLocal _ -> assert false (* Vernaculars that take a locality flag *) let check_vernac_supports_locality c l = match l, c with | None, _ -> () | Some _, ( VernacTacticNotation _ | VernacOpenCloseScope _ | VernacSyntaxExtension _ | VernacInfix _ | VernacNotation _ | VernacDefinition _ | VernacFixpoint _ | VernacCoFixpoint _ | VernacAssumption _ | VernacCoercion _ | VernacIdentityCoercion _ | VernacInstance _ | VernacDeclareInstances _ | VernacDeclareMLModule _ | VernacDeclareTacticDefinition _ | VernacCreateHintDb _ | VernacRemoveHints _ | VernacHints _ | VernacSyntacticDefinition _ | VernacArgumentsScope _ | VernacDeclareImplicits _ | VernacArguments _ | VernacGeneralizable _ | VernacSetOpacity _ | VernacSetStrategy _ | VernacSetOption _ | VernacUnsetOption _ | VernacDeclareReduction _ | VernacExtend _ | VernacInductive _) -> () | Some _, _ -> Errors.error "This command does not support Locality" (* Vernaculars that take a polymorphism flag *) let check_vernac_supports_polymorphism c p = match p, c with | None, _ -> () | Some _, ( VernacDefinition _ | VernacFixpoint _ | VernacCoFixpoint _ | VernacAssumption _ | VernacInductive _ | VernacStartTheoremProof _ | VernacCoercion _ | VernacIdentityCoercion _ | VernacInstance _ | VernacDeclareInstances _ | VernacHints _ | VernacContext _ | VernacExtend _ ) -> () | Some _, _ -> Errors.error "This command does not support Polymorphism" let enforce_polymorphism = function | None -> Flags.is_universe_polymorphism () | Some b -> b (** A global default timeout, controled by option "Set Default Timeout n". Use "Unset Default Timeout" to deactivate it (or set it to 0). *) let default_timeout = ref None let _ = Goptions.declare_int_option { Goptions.optsync = true; Goptions.optdepr = false; Goptions.optname = "the default timeout"; Goptions.optkey = ["Default";"Timeout"]; Goptions.optread = (fun () -> !default_timeout); Goptions.optwrite = ((:=) default_timeout) } (** When interpreting a command, the current timeout is initially the default one, but may be modified locally by a Timeout command. *) let current_timeout = ref None let vernac_timeout f = match !current_timeout, !default_timeout with | Some n, _ | None, Some n -> let f () = f (); current_timeout := None in Control.timeout n f Timeout | None, None -> f () let restore_timeout () = current_timeout := None let locate_if_not_already loc (e, info) = match Loc.get_loc info with | None -> (e, Loc.add_loc info loc) | Some l -> if Loc.is_ghost l then (e, Loc.add_loc info loc) else (e, info) exception HasNotFailed exception HasFailed of std_ppcmds let with_fail b f = if not b then f () else begin try (* If the command actually works, ignore its effects on the state. * Note that error has to be printed in the right state, hence * within the purified function *) Future.purify (fun v -> try f v; raise HasNotFailed with | HasNotFailed as e -> raise e | e -> let e = Errors.push e in raise (HasFailed (Errors.iprint (Cerrors.process_vernac_interp_error ~allow_uncaught:false ~with_header:false e)))) () with e when Errors.noncritical e -> let (e, _) = Errors.push e in match e with | HasNotFailed -> errorlabstrm "Fail" (str "The command has not failed!") | HasFailed msg -> if is_verbose () || !test_mode || !ide_slave then msg_info (str "The command has indeed failed with message:" ++ fnl () ++ msg) | _ -> assert false end let interp ?(verbosely=true) ?proof (loc,c) = let orig_program_mode = Flags.is_program_mode () in let rec aux ?locality ?polymorphism isprogcmd = function | VernacProgram c when not isprogcmd -> aux ?locality ?polymorphism true c | VernacProgram _ -> Errors.error "Program mode specified twice" | VernacLocal (b, c) when Option.is_empty locality -> aux ~locality:b ?polymorphism isprogcmd c | VernacPolymorphic (b, c) when polymorphism = None -> aux ?locality ~polymorphism:b isprogcmd c | VernacPolymorphic (b, c) -> Errors.error "Polymorphism specified twice" | VernacLocal _ -> Errors.error "Locality specified twice" | VernacStm (Command c) -> aux ?locality ?polymorphism isprogcmd c | VernacStm (PGLast c) -> aux ?locality ?polymorphism isprogcmd c | VernacStm _ -> assert false (* Done by Stm *) | VernacFail v -> with_fail true (fun () -> aux ?locality ?polymorphism isprogcmd v) | VernacTimeout (n,v) -> current_timeout := Some n; aux ?locality ?polymorphism isprogcmd v | VernacRedirect (s, v) -> Pp.with_output_to_file s (aux_list ?locality ?polymorphism isprogcmd) v; | VernacTime v -> System.with_time !Flags.time (aux_list ?locality ?polymorphism isprogcmd) v; | VernacLoad (_,fname) -> vernac_load (aux false) fname | c -> check_vernac_supports_locality c locality; check_vernac_supports_polymorphism c polymorphism; let poly = enforce_polymorphism polymorphism in Obligations.set_program_mode isprogcmd; try vernac_timeout begin fun () -> if verbosely then Flags.verbosely (interp ?proof locality poly) c else Flags.silently (interp ?proof locality poly) c; if orig_program_mode || not !Flags.program_mode || isprogcmd then Flags.program_mode := orig_program_mode end with | reraise when (match reraise with | Timeout -> true | e -> Errors.noncritical e) -> let e = Errors.push reraise in let e = locate_if_not_already loc e in let () = restore_timeout () in Flags.program_mode := orig_program_mode; iraise e and aux_list ?locality ?polymorphism isprogcmd l = List.iter (aux false) (List.map snd l) in if verbosely then Flags.verbosely (aux false) c else aux false c let () = Hook.set Stm.interp_hook interp let () = Hook.set Stm.with_fail_hook with_fail