(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* ()); open_function = cache_syntax; cache_function = cache_syntax; export_function = (fun x -> Some x) }) (* Syntax extension functions (registered in the environnement) *) (* Checking the pretty-printing rules against free meta-variables. * Note that object are checked before they are added in the environment. * Syntax objects in compiled modules are not re-checked. *) let add_syntax_obj whatfor sel = Lib.add_anonymous_leaf (inPPSyntax (interp_syntax_entry whatfor sel)) (************************ ******* GRAMMAR ******** ************************) let _ = declare_summary "GRAMMAR_LEXER" { freeze_function = Egrammar.freeze; unfreeze_function = Egrammar.unfreeze; init_function = Egrammar.init; survive_section = false } (* Tokens *) let cache_token (_,s) = Pcoq.lexer.Token.using ("", s) let (inToken, outToken) = declare_object ("TOKEN", { load_function = (fun _ -> ()); open_function = cache_token; cache_function = cache_token; export_function = (fun x -> Some x)}) let add_token_obj s = Lib.add_anonymous_leaf (inToken s) (* Grammar rules *) let cache_grammar (_,a) = Egrammar.extend_grammar a let (inGrammar, outGrammar) = declare_object ("GRAMMAR", { load_function = (fun _ -> ()); open_function = cache_grammar; cache_function = cache_grammar; export_function = (fun x -> Some x)}) let add_grammar_obj univ al = Lib.add_anonymous_leaf (inGrammar (Extend.interp_grammar_command univ al)) (* printing grammar entries *) let print_grammar univ entry = let u = get_univ univ in let te = get_entry u entry in match te with | Ast e -> Gram.Entry.print e | ListAst e -> Gram.Entry.print e (* Infix, distfix *) let split str = let rec loop beg i = if i < String.length str then if str.[i] == ' ' then if beg == i then loop (succ beg) (succ i) else String.sub str beg (i - beg) :: loop (succ i) (succ i) else loop beg (succ i) else if beg == i then [] else [String.sub str beg (i - beg)] in loop 0 0 (* An infix or a distfix is a pair of a grammar rule and a pretty-printing rule *) let cache_infix (_,(gr,se)) = Egrammar.extend_grammar gr; Esyntax.add_ppobject {sc_univ="constr";sc_entries=se} let (inInfix, outInfix) = declare_object ("INFIX", { load_function = (fun _ -> ()); open_function = cache_infix; cache_function = cache_infix; export_function = (fun x -> Some x)}) let prec_assoc = function | Some(Gramext.RightA) -> (":L",":E") | Some(Gramext.LeftA) -> (":E",":L") | Some(Gramext.NonA) -> (":L",":L") | None -> (":E",":L") (* LEFTA by default *) let constr_tab = [| "constr0"; "constr1"; "constr2"; "constr3"; "lassoc_constr4"; "constr5"; "constr6"; "constr7"; "constr8"; "constr9"; "constr10" |] let constr_rule n p = if p = ":E" then constr_tab.(n) else constr_tab.(n-1) let nonterm_meta nt var = NonTerm(NtShort nt, ETast, Some var) (* infix_syntax_entry : int -> string -> string -> grammar_entry * takes precedence, infix op and prefix op and returns * the corresponding Syntax entry *) let infix_syntax_entry assoc n inf prefname astpref = let (lp,rp) = match assoc with | Some(Gramext.RightA) -> (Extend.L,Extend.E) | Some(Gramext.LeftA) -> (Extend.E,Extend.L) | Some(Gramext.NonA) -> (Extend.L,Extend.L) | None -> (Extend.E,Extend.L) (* LEFTA by default *) in let inf = (* Not necessary but increases legibility (e.g. for "=_S") *) if is_letter (inf.[String.length inf -1]) then " "^inf^" " else inf in [{Extend.syn_id = prefname; Extend.syn_prec = n,0,0; Extend.syn_astpat = Pnode ("APPLIST", Pcons (Pquote astpref, Pcons (Pmeta ("$e1", Tany), Pcons (Pmeta ("$e2", Tany), Pnil)))); Extend.syn_hunks = [Extend.UNP_BOX (Extend.PpHOVB 1, [Extend.PH (Pmeta ("$e1", Tany), None, lp); Extend.UNP_BRK (0, 1); Extend.RO inf; Extend.PH (Pmeta ("$e2", Tany), None, rp)])]}] (* infix_gram_entry : int -> string -> string -> grammar_entry * takes precedence, infix op and prefix op and returns * the corresponding Grammar entry *) let gram_infix assoc n infl prefname astpref = let (lp,rp) = prec_assoc assoc in let action = Aast(Pnode("APPLIST", Pcons(Pquote astpref, Pcons(Pmeta("$a",Tany), Pcons(Pmeta("$b",Tany),Pnil))))) in { gc_univ = "constr"; gc_entries = [ { ge_name = constr_rule n ":E"; ge_type = ETast; gl_assoc = None; gl_rules = [ { gr_name = prefname; gr_production = (nonterm_meta (constr_rule n lp) "$a") ::(List.map (fun s -> Term("", s)) infl) @[nonterm_meta (constr_rule n rp) "$b"]; gr_action = action} ] } ] } let add_infix assoc n inf pr = (* check the precedence *) if n<1 or n>10 then errorlabstrm "Metasyntax.infix_grammar_entry" (str"Precedence must be between 1 and 10."); if (assoc<>None) & (n<6 or n>9) then errorlabstrm "Vernacentries.infix_grammar_entry" (str"Associativity Precedence must be 6,7,8 or 9."); (* check the grammar entry *) let prefname = inf^"_infix" in let gram_rule = gram_infix assoc n (split inf) prefname pr in (* check the syntax entry *) let syntax_rule = infix_syntax_entry assoc n inf prefname pr in Lib.add_anonymous_leaf (inInfix(gram_rule,syntax_rule)) (* Distfix *) (* Distfix LEFTA 7 "/ _ / _ /" app.*) let rec make_symbols c_first c_next c_last new_var = function | [] -> [] | ["_"] -> [nonterm_meta c_last ("$e"^(string_of_int new_var))] | ("_"::sl) -> let symb = nonterm_meta c_first ("$e"^(string_of_int new_var)) in symb :: make_symbols c_next c_next c_last (new_var+1) sl | s :: sl -> let symb = Term("", s) in symb :: make_symbols c_next c_next c_last new_var sl let collect_metas sl = List.fold_right (fun it metatl -> match it with | NonTerm(_,_,Some m) -> Pcons(Pmeta(m,Tany),metatl) | _ -> metatl) sl Pnil let distfix assoc n sl fname astf = let (lp,rp) = prec_assoc assoc in let symbols = make_symbols (constr_rule n lp) constr_tab.(8) (constr_rule n rp) 0 sl in let action = Aast(Pnode("APPLIST",Pcons(Pquote astf, collect_metas symbols))) in { gc_univ = "constr"; gc_entries = [ { ge_name = constr_rule n ":E"; ge_type = ETast; gl_assoc = None; gl_rules = [ { gr_name = fname; gr_production = symbols; gr_action = action} ] } ] } let add_distfix a n df astf = let fname = df^"_distfix" in Lib.add_anonymous_leaf (inInfix(distfix a n (split df) fname astf, []))