(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* (pi2 (Global.lookup_named id),variable_opacity id) | ConstRef cst -> let {const_body=body;const_opaque=opaq} = Global.lookup_constant cst in (Option.map Declarations.force body,opaq) | _ -> assert false let adjust_guardness_conditions const = function | [] -> const (* Not a recursive statement *) | possible_indexes -> (* Try all combinations... not optimal *) match kind_of_term const.const_entry_body with | Fix ((nv,0),(_,_,fixdefs as fixdecls)) -> (* let possible_indexes = List.map2 (fun i c -> match i with Some i -> i | None -> interval 0 (List.length ((lam_assum c)))) lemma_guard (Array.to_list fixdefs) in *) let indexes = search_guard dummy_loc (Global.env()) possible_indexes fixdecls in { const with const_entry_body = mkFix ((indexes,0),fixdecls) } | c -> const let find_mutually_recursive_statements thms = let n = List.length thms in let inds = List.map (fun (id,(t,impls,annot)) -> let (hyps,ccl) = decompose_prod_assum t in let x = (id,(t,impls)) in match annot with (* Explicit fixpoint decreasing argument is given *) | Some (Some (_,id),CStructRec) -> let i,b,typ = lookup_rel_id id hyps in (match kind_of_term t with | Ind (kn,_ as ind) when let mind = Global.lookup_mind kn in mind.mind_finite & b = None -> [ind,x,i],[] | _ -> error "Decreasing argument is not an inductive assumption.") (* Unsupported cases *) | Some (_,(CWfRec _|CMeasureRec _)) -> error "Only structural decreasing is supported for mutual statements." (* Cofixpoint or fixpoint w/o explicit decreasing argument *) | None | Some (None, CStructRec) -> let whnf_hyp_hds = map_rel_context_in_env (fun env c -> fst (whd_betadeltaiota_stack env Evd.empty c)) (Global.env()) hyps in let ind_hyps = List.flatten (list_map_i (fun i (_,b,t) -> match kind_of_term t with | Ind (kn,_ as ind) when let mind = Global.lookup_mind kn in mind.mind_finite & b = None -> [ind,x,i] | _ -> []) 0 (List.rev whnf_hyp_hds)) in let ind_ccl = let cclenv = push_rel_context hyps (Global.env()) in let whnf_ccl,_ = whd_betadeltaiota_stack cclenv Evd.empty ccl in match kind_of_term whnf_ccl with | Ind (kn,_ as ind) when let mind = Global.lookup_mind kn in mind.mind_ntypes = n & not mind.mind_finite -> [ind,x,0] | _ -> [] in ind_hyps,ind_ccl) thms in let inds_hyps,ind_ccls = List.split inds in let of_same_mutind ((kn,_),_,_) = function ((kn',_),_,_) -> kn = kn' in (* Check if all conclusions are coinductive in the same type *) (* (degenerated cartesian product since there is at most one coind ccl) *) let same_indccl = list_cartesians_filter (fun hyp oks -> if List.for_all (of_same_mutind hyp) oks then Some (hyp::oks) else None) [] ind_ccls in let ordered_same_indccl = List.filter (list_for_all_i (fun i ((kn,j),_,_) -> i=j) 0) same_indccl in (* Check if some hypotheses are inductive in the same type *) let common_same_indhyp = list_cartesians_filter (fun hyp oks -> if List.for_all (of_same_mutind hyp) oks then Some (hyp::oks) else None) [] inds_hyps in let ordered_inds,finite,guard = match ordered_same_indccl, common_same_indhyp with | indccl::rest, _ -> assert (rest=[]); (* One occ. of common coind ccls and no common inductive hyps *) if common_same_indhyp <> [] then if_verbose warning "Assuming mutual coinductive statements."; flush_all (); indccl, true, [] | [], _::_ -> if same_indccl <> [] && list_distinct (List.map pi1 (List.hd same_indccl)) then if_verbose warn (strbrk "Coinductive statements do not follow the order of definition, assume the proof to be by induction."); flush_all (); let possible_guards = List.map (List.map pi3) inds_hyps in (* assume the largest indices as possible *) list_last common_same_indhyp, false, possible_guards | _, [] -> error ("Cannot find common (mutual) inductive premises or coinductive" ^ " conclusions in the statements.") in (finite,guard,None), List.map pi2 ordered_inds let look_for_possibly_mutual_statements = function | [id,(t,impls,None)] -> (* One non recursively proved theorem *) None,[id,(t,impls)] | _::_ as thms -> (* More than one statement and/or an explicit decreasing mark: *) (* we look for a common inductive hyp or a common coinductive conclusion *) let recguard,thms = find_mutually_recursive_statements thms in Some recguard,thms | [] -> anomaly "Empty list of theorems." (* Saving a goal *) let save id const do_guard (locality,kind) hook = let const = adjust_guardness_conditions const do_guard in let {const_entry_body = pft; const_entry_type = tpo; const_entry_opaque = opacity } = const in let k = logical_kind_of_goal_kind kind in let l,r = match locality with | Local when Lib.sections_are_opened () -> let c = SectionLocalDef (pft, tpo, opacity) in let _ = declare_variable id (Lib.cwd(), c, k) in (Local, VarRef id) | Local | Global -> let kn = declare_constant id (DefinitionEntry const, k) in Autoinstance.search_declaration (ConstRef kn); (Global, ConstRef kn) in Pfedit.delete_current_proof (); definition_message id; hook l r let save_hook = ref ignore let set_save_hook f = save_hook := f let save_named opacity = let id,(const,do_guard,persistence,hook) = Pfedit.cook_proof !save_hook in let const = { const with const_entry_opaque = opacity } in save id const do_guard persistence hook let default_thm_id = id_of_string "Unnamed_thm" let compute_proof_name locality = function | Some (loc,id) -> (* We check existence here: it's a bit late at Qed time *) if Nametab.exists_cci (Lib.make_path id) || is_section_variable id || locality=Global && Nametab.exists_cci (Lib.make_path_except_section id) then user_err_loc (loc,"",pr_id id ++ str " already exists."); id | None -> next_global_ident_away default_thm_id (Pfedit.get_all_proof_names ()) let save_remaining_recthms (local,kind) body opaq i (id,(t_i,(_,imps))) = match body with | None -> (match local with | Local -> let impl=false in (* copy values from Vernacentries *) let k = IsAssumption Conjectural in let c = SectionLocalAssum (t_i,impl) in let _ = declare_variable id (Lib.cwd(),c,k) in (Local,VarRef id,imps) | Global -> let k = IsAssumption Conjectural in let kn = declare_constant id (ParameterEntry (t_i,false), k) in (Global,ConstRef kn,imps)) | Some body -> let k = logical_kind_of_goal_kind kind in let body_i = match kind_of_term body with | Fix ((nv,0),decls) -> mkFix ((nv,i),decls) | CoFix (0,decls) -> mkCoFix (i,decls) | _ -> anomaly "Not a proof by induction" in match local with | Local -> let c = SectionLocalDef (body_i, Some t_i, opaq) in let _ = declare_variable id (Lib.cwd(), c, k) in (Local,VarRef id,imps) | Global -> let const = { const_entry_body = body_i; const_entry_type = Some t_i; const_entry_opaque = opaq; const_entry_boxed = false (* copy of what cook_proof does *)} in let kn = declare_constant id (DefinitionEntry const, k) in (Global,ConstRef kn,imps) (* 4.2| General support for goals *) let check_anonymity id save_ident = if atompart_of_id id <> "Unnamed_thm" then error "This command can only be used for unnamed theorem." let save_anonymous opacity save_ident = let id,(const,do_guard,persistence,hook) = Pfedit.cook_proof !save_hook in let const = { const with const_entry_opaque = opacity } in check_anonymity id save_ident; save save_ident const do_guard persistence hook let save_anonymous_with_strength kind opacity save_ident = let id,(const,do_guard,_,hook) = Pfedit.cook_proof !save_hook in let const = { const with const_entry_opaque = opacity } in check_anonymity id save_ident; (* we consider that non opaque behaves as local for discharge *) save save_ident const do_guard (Global, Proof kind) hook (* Starting a goal *) let start_hook = ref ignore let set_start_hook = (:=) start_hook let start_proof id kind c ?init_tac ?(compute_guard=[]) hook = let sign = Global.named_context () in let sign = clear_proofs sign in !start_hook c; Pfedit.start_proof id kind sign c ?init_tac ~compute_guard hook let rec_tac_initializer finite guard thms = if finite then match List.map (fun (id,(t,_)) -> (id,t)) thms with | (id,_)::l -> Hiddentac.h_mutual_cofix true id l | _ -> assert false else (* nl is dummy: it will be recomputed at Qed-time *) let nl = List.map succ (List.map list_last guard) in match List.map2 (fun (id,(t,_)) n -> (id,n,t)) thms nl with | (id,n,_)::l -> Hiddentac.h_mutual_fix true id n l | _ -> assert false let start_proof_with_initialization kind recguard thms hook = let intro_tac (_, (_, (len, _))) = Refiner.tclDO len Tactics.intro in let init_tac,guard = match recguard with | Some (finite,guard,init_tac) -> let rec_tac = rec_tac_initializer finite guard thms in Some (match init_tac with | None -> if Flags.is_auto_intros () then tclTHENS rec_tac (List.map intro_tac thms) else rec_tac | Some tacl -> tclTHENS rec_tac (if Flags.is_auto_intros () then List.map2 (fun tac thm -> tclTHEN tac (intro_tac thm)) tacl thms else tacl)),guard | None -> assert (List.length thms = 1); (if Flags.is_auto_intros () then Some (intro_tac (List.hd thms)) else None), [] in match thms with | [] -> anomaly "No proof to start" | (id,(t,(len,imps)))::other_thms -> let hook strength ref = let other_thms_data = if other_thms = [] then [] else (* there are several theorems defined mutually *) let body,opaq = retrieve_first_recthm ref in list_map_i (save_remaining_recthms kind body opaq) 1 other_thms in let thms_data = (strength,ref,imps)::other_thms_data in List.iter (fun (strength,ref,imps) -> maybe_declare_manual_implicits false ref imps; hook strength ref) thms_data in start_proof id kind t ?init_tac hook ~compute_guard:guard let start_proof_com kind thms hook = let evdref = ref (create_evar_defs Evd.empty) in let env0 = Global.env () in let thms = List.map (fun (sopt,(bl,t,guard)) -> let (env, ctx), imps = interp_context_evars evdref env0 bl in let t', imps' = interp_type_evars_impls ~evdref env t in Sign.iter_rel_context (check_evars env Evd.empty !evdref) ctx; let len = List.length ctx in (compute_proof_name (fst kind) sopt, (nf_isevar !evdref (it_mkProd_or_LetIn t' ctx), (len, imps @ lift_implicits len imps'), guard))) thms in let recguard,thms = look_for_possibly_mutual_statements thms in start_proof_with_initialization kind recguard thms hook (* Admitted *) let admit () = let (id,k,typ,hook) = Pfedit.current_proof_statement () in let kn = declare_constant id (ParameterEntry (typ,false),IsAssumption Conjectural) in Pfedit.delete_current_proof (); assumption_message id; hook Global (ConstRef kn) (* Miscellaneous *) let get_current_context () = try Pfedit.get_current_goal_context () with e when Logic.catchable_exception e -> (Evd.empty, Global.env())