(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* [] | t::q -> t::(kick_last q) | [] -> failwith "kick_last" and aux = function | (0,l') -> l' | (n,h::t) -> aux (n-1,t) | _ -> failwith "quick_chop" in if n > (List.length l) then failwith "quick_chop args" else kick_last (aux (n,l) ) let deconstruct_type t = let l,r = decompose_prod t in (List.rev_map snd l)@[r] exception EqNotFound of inductive * inductive exception EqUnknown of string exception UndefinedCst of string exception InductiveWithProduct exception InductiveWithSort exception ParameterWithoutEquality of constant exception NonSingletonProp of inductive exception DecidabilityMutualNotSupported let dl = Loc.ghost let constr_of_global g = lazy (Universes.constr_of_global g) (* Some pre declaration of constant we are going to use *) let bb = constr_of_global Coqlib.glob_bool let andb_prop = fun _ -> (Coqlib.build_bool_type()).Coqlib.andb_prop let andb_true_intro = fun _ -> (Coqlib.build_bool_type()).Coqlib.andb_true_intro let tt = constr_of_global Coqlib.glob_true let ff = constr_of_global Coqlib.glob_false let eq = constr_of_global Coqlib.glob_eq let sumbool = Coqlib.build_coq_sumbool let andb = fun _ -> (Coqlib.build_bool_type()).Coqlib.andb let induct_on c = induction false None c None None let destruct_on c = destruct false None c None None let destruct_on_using c id = destruct false None c (Some (dl,[[dl,IntroNaming IntroAnonymous]; [dl,IntroNaming (IntroIdentifier id)]])) None let destruct_on_as c l = destruct false None c (Some (dl,l)) None (* reconstruct the inductive with the correct deBruijn indexes *) let mkFullInd (ind,u) n = let mib = Global.lookup_mind (fst ind) in let nparams = mib.mind_nparams in let nparrec = mib.mind_nparams_rec in (* params context divided *) let lnonparrec,lnamesparrec = context_chop (nparams-nparrec) mib.mind_params_ctxt in if nparrec > 0 then mkApp (mkIndU (ind,u), Array.of_list(extended_rel_list (nparrec+n) lnamesparrec)) else mkIndU (ind,u) let check_bool_is_defined () = try let _ = Global.type_of_global_unsafe Coqlib.glob_bool in () with e when Errors.noncritical e -> raise (UndefinedCst "bool") let beq_scheme_kind_aux = ref (fun _ -> failwith "Undefined") let build_beq_scheme mode kn = check_bool_is_defined (); (* fetching global env *) let env = Global.env() in (* fetching the mutual inductive body *) let mib = Global.lookup_mind kn in (* number of inductives in the mutual *) let nb_ind = Array.length mib.mind_packets in (* number of params in the type *) let nparams = mib.mind_nparams in let nparrec = mib.mind_nparams_rec in (* params context divided *) let lnonparrec,lnamesparrec = context_chop (nparams-nparrec) mib.mind_params_ctxt in (* predef coq's boolean type *) (* rec name *) let rec_name i =(Id.to_string (Array.get mib.mind_packets i).mind_typename)^ "_eqrec" in (* construct the "fun A B ... N, eqA eqB eqC ... N => fixpoint" part *) let create_input c = let myArrow u v = mkArrow u (lift 1 v) and eqName = function | Name s -> Id.of_string ("eq_"^(Id.to_string s)) | Anonymous -> Id.of_string "eq_A" in let ext_rel_list = extended_rel_list 0 lnamesparrec in let lift_cnt = ref 0 in let eqs_typ = List.map (fun aa -> let a = lift !lift_cnt aa in incr lift_cnt; myArrow a (myArrow a (Lazy.force bb)) ) ext_rel_list in let eq_input = List.fold_left2 ( fun a b (n,_,_) -> (* mkLambda(n,b,a) ) *) (* here I leave the Naming thingy so that the type of the function is more readable for the user *) mkNamedLambda (eqName n) b a ) c (List.rev eqs_typ) lnamesparrec in List.fold_left (fun a (n,_,t) ->(* mkLambda(n,t,a)) eq_input rel_list *) (* Same here , hoping the auto renaming will do something good ;) *) mkNamedLambda (match n with Name s -> s | Anonymous -> Id.of_string "A") t a) eq_input lnamesparrec in let make_one_eq cur = let u = Univ.Instance.empty in let ind = (kn,cur),u (* FIXME *) in (* current inductive we are working on *) let cur_packet = mib.mind_packets.(snd (fst ind)) in (* Inductive toto : [rettyp] := *) let rettyp = Inductive.type_of_inductive env ((mib,cur_packet),u) in (* split rettyp in a list without the non rec params and the last -> e.g. Inductive vec (A:Set) : nat -> Set := ... will do [nat] *) let rettyp_l = quick_chop nparrec (deconstruct_type rettyp) in (* give a type A, this function tries to find the equality on A declared previously *) (* nlist = the number of args (A , B , ... ) eqA = the deBruijn index of the first eq param ndx = how much to translate due to the 2nd Case *) let compute_A_equality rel_list nlist eqA ndx t = let lifti = ndx in let rec aux c = let (c,a) = Reductionops.whd_betaiota_stack Evd.empty c in match kind_of_term c with | Rel x -> mkRel (x-nlist+ndx), Declareops.no_seff | Var x -> mkVar (id_of_string ("eq_"^(string_of_id x))), Declareops.no_seff | Cast (x,_,_) -> aux (applist (x,a)) | App _ -> assert false | Ind ((kn',i as ind'),u) (*FIXME: universes *) -> if eq_mind kn kn' then mkRel(eqA-nlist-i+nb_ind-1), Declareops.no_seff else begin try let eq, eff = let c, eff = find_scheme ~mode (!beq_scheme_kind_aux()) (kn',i) in mkConst c, eff in let eqa, eff = let eqa, effs = List.split (List.map aux a) in Array.of_list eqa, Declareops.union_side_effects (Declareops.flatten_side_effects (List.rev effs)) eff in let args = Array.append (Array.of_list (List.map (fun x -> lift lifti x) a)) eqa in if Int.equal (Array.length args) 0 then eq, eff else mkApp (eq, args), eff with Not_found -> raise(EqNotFound (ind', fst ind)) end | Sort _ -> raise InductiveWithSort | Prod _ -> raise InductiveWithProduct | Lambda _-> raise (EqUnknown "Lambda") | LetIn _ -> raise (EqUnknown "LetIn") | Const kn -> (match Environ.constant_opt_value_in env kn with | None -> raise (ParameterWithoutEquality (fst kn)) | Some c -> aux (applist (c,a))) | Proj _ -> raise (EqUnknown "Proj") | Construct _ -> raise (EqUnknown "Construct") | Case _ -> raise (EqUnknown "Case") | CoFix _ -> raise (EqUnknown "CoFix") | Fix _ -> raise (EqUnknown "Fix") | Meta _ -> raise (EqUnknown "Meta") | Evar _ -> raise (EqUnknown "Evar") in aux t in (* construct the predicate for the Case part*) let do_predicate rel_list n = List.fold_left (fun a b -> mkLambda(Anonymous,b,a)) (mkLambda (Anonymous, mkFullInd ind (n+3+(List.length rettyp_l)+nb_ind-1), (Lazy.force bb))) (List.rev rettyp_l) in (* make_one_eq *) (* do the [| C1 ... => match Y with ... end ... Cn => match Y with ... end |] part *) let ci = make_case_info env (fst ind) MatchStyle in let constrs n = get_constructors env (make_ind_family (ind, extended_rel_list (n+nb_ind-1) mib.mind_params_ctxt)) in let constrsi = constrs (3+nparrec) in let n = Array.length constrsi in let ar = Array.make n (Lazy.force ff) in let eff = ref Declareops.no_seff in for i=0 to n-1 do let nb_cstr_args = List.length constrsi.(i).cs_args in let ar2 = Array.make n (Lazy.force ff) in let constrsj = constrs (3+nparrec+nb_cstr_args) in for j=0 to n-1 do if Int.equal i j then ar2.(j) <- let cc = (match nb_cstr_args with | 0 -> Lazy.force tt | _ -> let eqs = Array.make nb_cstr_args (Lazy.force tt) in for ndx = 0 to nb_cstr_args-1 do let _,_,cc = List.nth constrsi.(i).cs_args ndx in let eqA, eff' = compute_A_equality rel_list nparrec (nparrec+3+2*nb_cstr_args) (nb_cstr_args+ndx+1) cc in eff := Declareops.union_side_effects eff' !eff; Array.set eqs ndx (mkApp (eqA, [|mkRel (ndx+1+nb_cstr_args);mkRel (ndx+1)|] )) done; Array.fold_left (fun a b -> mkApp (andb(),[|b;a|])) (eqs.(0)) (Array.sub eqs 1 (nb_cstr_args - 1)) ) in (List.fold_left (fun a (p,q,r) -> mkLambda (p,r,a)) cc (constrsj.(j).cs_args) ) else ar2.(j) <- (List.fold_left (fun a (p,q,r) -> mkLambda (p,r,a)) (Lazy.force ff) (constrsj.(j).cs_args) ) done; ar.(i) <- (List.fold_left (fun a (p,q,r) -> mkLambda (p,r,a)) (mkCase (ci,do_predicate rel_list nb_cstr_args, mkVar (Id.of_string "Y") ,ar2)) (constrsi.(i).cs_args)) done; mkNamedLambda (Id.of_string "X") (mkFullInd ind (nb_ind-1+1)) ( mkNamedLambda (Id.of_string "Y") (mkFullInd ind (nb_ind-1+2)) ( mkCase (ci, do_predicate rel_list 0,mkVar (Id.of_string "X"),ar))), !eff in (* build_beq_scheme *) let names = Array.make nb_ind Anonymous and types = Array.make nb_ind mkSet and cores = Array.make nb_ind mkSet in let eff = ref Declareops.no_seff in let u = Univ.Instance.empty in for i=0 to (nb_ind-1) do names.(i) <- Name (Id.of_string (rec_name i)); types.(i) <- mkArrow (mkFullInd ((kn,i),u) 0) (mkArrow (mkFullInd ((kn,i),u) 1) (Lazy.force bb)); let c, eff' = make_one_eq i in cores.(i) <- c; eff := Declareops.union_side_effects eff' !eff done; (Array.init nb_ind (fun i -> let kelim = Inductive.elim_sorts (mib,mib.mind_packets.(i)) in if not (Sorts.List.mem InSet kelim) then raise (NonSingletonProp (kn,i)); let fix = mkFix (((Array.make nb_ind 0),i),(names,types,cores)) in create_input fix), Evd.empty_evar_universe_context (* FIXME *)), !eff let beq_scheme_kind = declare_mutual_scheme_object "_beq" build_beq_scheme let _ = beq_scheme_kind_aux := fun () -> beq_scheme_kind (* This function tryies to get the [inductive] between a constr the constr should be Ind i or App(Ind i,[|args|]) *) let destruct_ind c = try let u,v = destApp c in let indc = destInd u in indc,v with DestKO -> let indc = destInd c in indc,[||] (* In the following, avoid is the list of names to avoid. If the args of the Inductive type are A1 ... An then avoid should be [| lb_An ... lb _A1 (resp. bl_An ... bl_A1) eq_An .... eq_A1 An ... A1 |] so from Ai we can find the the correct eq_Ai bl_ai or lb_ai *) (* used in the leib -> bool side*) let do_replace_lb mode lb_scheme_key aavoid narg p q = let avoid = Array.of_list aavoid in let do_arg v offset = try let x = narg*offset in let s = destVar v in let n = Array.length avoid in let rec find i = if Id.equal avoid.(n-i) s then avoid.(n-i-x) else (if i (* if this happen then the args have to be already declared as a Parameter*) ( let mp,dir,lbl = repr_con (fst (destConst v)) in mkConst (make_con mp dir (mk_label ( if Int.equal offset 1 then ("eq_"^(Label.to_string lbl)) else ((Label.to_string lbl)^"_lb") ))) ) in Proofview.Goal.nf_enter begin fun gl -> let type_of_pq = Tacmach.New.of_old (fun gl -> pf_unsafe_type_of gl p) gl in let u,v = destruct_ind type_of_pq in let lb_type_of_p = try let c, eff = find_scheme ~mode lb_scheme_key (out_punivs u) (*FIXME*) in Proofview.tclUNIT (mkConst c, eff) with Not_found -> (* spiwack: the format of this error message should probably be improved. *) let err_msg = (str "Leibniz->boolean:" ++ str "You have to declare the" ++ str "decidability over " ++ Printer.pr_constr type_of_pq ++ str " first.") in Tacticals.New.tclZEROMSG err_msg in lb_type_of_p >>= fun (lb_type_of_p,eff) -> let lb_args = Array.append (Array.append (Array.map (fun x -> x) v) (Array.map (fun x -> do_arg x 1) v)) (Array.map (fun x -> do_arg x 2) v) in let app = if Array.equal eq_constr lb_args [||] then lb_type_of_p else mkApp (lb_type_of_p,lb_args) in Tacticals.New.tclTHENLIST [ Proofview.tclEFFECTS eff; Equality.replace p q ; apply app ; Auto.default_auto] end (* used in the bool -> leib side *) let do_replace_bl mode bl_scheme_key (ind,u as indu) aavoid narg lft rgt = let avoid = Array.of_list aavoid in let do_arg v offset = try let x = narg*offset in let s = destVar v in let n = Array.length avoid in let rec find i = if Id.equal avoid.(n-i) s then avoid.(n-i-x) else (if i (* if this happen then the args have to be already declared as a Parameter*) ( let mp,dir,lbl = repr_con (fst (destConst v)) in mkConst (make_con mp dir (mk_label ( if Int.equal offset 1 then ("eq_"^(Label.to_string lbl)) else ((Label.to_string lbl)^"_bl") ))) ) in let rec aux l1 l2 = match (l1,l2) with | (t1::q1,t2::q2) -> Proofview.Goal.enter begin fun gl -> let tt1 = Tacmach.New.pf_unsafe_type_of gl t1 in if eq_constr t1 t2 then aux q1 q2 else ( let u,v = try destruct_ind tt1 (* trick so that the good sequence is returned*) with e when Errors.noncritical e -> indu,[||] in if eq_ind (fst u) ind then Tacticals.New.tclTHENLIST [Equality.replace t1 t2; Auto.default_auto ; aux q1 q2 ] else ( let bl_t1, eff = try let c, eff = find_scheme bl_scheme_key (out_punivs u) (*FIXME*) in mkConst c, eff with Not_found -> (* spiwack: the format of this error message should probably be improved. *) let err_msg = string_of_ppcmds (str "boolean->Leibniz:" ++ str "You have to declare the" ++ str "decidability over " ++ Printer.pr_constr tt1 ++ str " first.") in error err_msg in let bl_args = Array.append (Array.append (Array.map (fun x -> x) v) (Array.map (fun x -> do_arg x 1) v)) (Array.map (fun x -> do_arg x 2) v ) in let app = if Array.equal eq_constr bl_args [||] then bl_t1 else mkApp (bl_t1,bl_args) in Tacticals.New.tclTHENLIST [ Proofview.tclEFFECTS eff; Equality.replace_by t1 t2 (Tacticals.New.tclTHEN (apply app) (Auto.default_auto)) ; aux q1 q2 ] ) ) end | ([],[]) -> Proofview.tclUNIT () | _ -> Tacticals.New.tclZEROMSG (str "Both side of the equality must have the same arity.") in begin try Proofview.tclUNIT (destApp lft) with DestKO -> Tacticals.New.tclZEROMSG (str "replace failed.") end >>= fun (ind1,ca1) -> begin try Proofview.tclUNIT (destApp rgt) with DestKO -> Tacticals.New.tclZEROMSG (str "replace failed.") end >>= fun (ind2,ca2) -> begin try Proofview.tclUNIT (out_punivs (destInd ind1)) with DestKO -> begin try Proofview.tclUNIT (fst (fst (destConstruct ind1))) with DestKO -> Tacticals.New.tclZEROMSG (str "The expected type is an inductive one.") end end >>= fun (sp1,i1) -> begin try Proofview.tclUNIT (out_punivs (destInd ind2)) with DestKO -> begin try Proofview.tclUNIT (fst (fst (destConstruct ind2))) with DestKO -> Tacticals.New.tclZEROMSG (str "The expected type is an inductive one.") end end >>= fun (sp2,i2) -> if not (eq_mind sp1 sp2) || not (Int.equal i1 i2) then Tacticals.New.tclZEROMSG (str "Eq should be on the same type") else aux (Array.to_list ca1) (Array.to_list ca2) (* create, from a list of ids [i1,i2,...,in] the list [(in,eq_in,in_bl,in_al),,...,(i1,eq_i1,i1_bl_i1_al )] *) let list_id l = List.fold_left ( fun a (n,_,t) -> let s' = match n with Name s -> Id.to_string s | Anonymous -> "A" in (Id.of_string s',Id.of_string ("eq_"^s'), Id.of_string (s'^"_bl"), Id.of_string (s'^"_lb")) ::a ) [] l (* build the right eq_I A B.. N eq_A .. eq_N *) let eqI ind l = let list_id = list_id l in let eA = Array.of_list((List.map (fun (s,_,_,_) -> mkVar s) list_id)@ (List.map (fun (_,seq,_,_)-> mkVar seq) list_id )) and e, eff = try let c, eff = find_scheme beq_scheme_kind ind in mkConst c, eff with Not_found -> errorlabstrm "AutoIndDecl.eqI" (str "The boolean equality on " ++ pr_mind (fst ind) ++ str " is needed."); in (if Array.equal eq_constr eA [||] then e else mkApp(e,eA)), eff (**********************************************************************) (* Boolean->Leibniz *) let compute_bl_goal ind lnamesparrec nparrec = let eqI, eff = eqI ind lnamesparrec in let list_id = list_id lnamesparrec in let create_input c = let x = Id.of_string "x" and y = Id.of_string "y" in let bl_typ = List.map (fun (s,seq,_,_) -> mkNamedProd x (mkVar s) ( mkNamedProd y (mkVar s) ( mkArrow ( mkApp(Lazy.force eq,[|(Lazy.force bb);mkApp(mkVar seq,[|mkVar x;mkVar y|]);(Lazy.force tt)|])) ( mkApp(Lazy.force eq,[|mkVar s;mkVar x;mkVar y|])) )) ) list_id in let bl_input = List.fold_left2 ( fun a (s,_,sbl,_) b -> mkNamedProd sbl b a ) c (List.rev list_id) (List.rev bl_typ) in let eqs_typ = List.map (fun (s,_,_,_) -> mkProd(Anonymous,mkVar s,mkProd(Anonymous,mkVar s,(Lazy.force bb))) ) list_id in let eq_input = List.fold_left2 ( fun a (s,seq,_,_) b -> mkNamedProd seq b a ) bl_input (List.rev list_id) (List.rev eqs_typ) in List.fold_left (fun a (n,_,t) -> mkNamedProd (match n with Name s -> s | Anonymous -> Id.of_string "A") t a) eq_input lnamesparrec in let n = Id.of_string "x" and m = Id.of_string "y" in let u = Univ.Instance.empty in create_input ( mkNamedProd n (mkFullInd (ind,u) nparrec) ( mkNamedProd m (mkFullInd (ind,u) (nparrec+1)) ( mkArrow (mkApp(Lazy.force eq,[|(Lazy.force bb);mkApp(eqI,[|mkVar n;mkVar m|]);(Lazy.force tt)|])) (mkApp(Lazy.force eq,[|mkFullInd (ind,u) (nparrec+3);mkVar n;mkVar m|])) ))), eff let compute_bl_tact mode bl_scheme_key ind lnamesparrec nparrec = let list_id = list_id lnamesparrec in let avoid = ref [] in let first_intros = ( List.map (fun (s,_,_,_) -> s ) list_id ) @ ( List.map (fun (_,seq,_,_ ) -> seq) list_id ) @ ( List.map (fun (_,_,sbl,_ ) -> sbl) list_id ) in let fresh_id s gl = Tacmach.New.of_old begin fun gsig -> let fresh = fresh_id (!avoid) s gsig in avoid := fresh::(!avoid); fresh end gl in Proofview.Goal.nf_enter begin fun gl -> let fresh_first_intros = List.map (fun id -> fresh_id id gl) first_intros in let freshn = fresh_id (Id.of_string "x") gl in let freshm = fresh_id (Id.of_string "y") gl in let freshz = fresh_id (Id.of_string "Z") gl in (* try with *) Tacticals.New.tclTHENLIST [ intros_using fresh_first_intros; intro_using freshn ; induct_on (mkVar freshn); intro_using freshm; destruct_on (mkVar freshm); intro_using freshz; intros; Tacticals.New.tclTRY ( Tacticals.New.tclORELSE reflexivity (Equality.discr_tac false None) ); Proofview.V82.tactic (simpl_in_hyp (freshz,Locus.InHyp)); (* repeat ( apply andb_prop in z;let z1:= fresh "Z" in destruct z as [z1 z]). *) Tacticals.New.tclREPEAT ( Tacticals.New.tclTHENLIST [ Simple.apply_in freshz (andb_prop()); Proofview.Goal.nf_enter begin fun gl -> let fresht = fresh_id (Id.of_string "Z") gl in (destruct_on_as (mkVar freshz) [[dl,IntroNaming (IntroIdentifier fresht); dl,IntroNaming (IntroIdentifier freshz)]]) end ]); (* Ci a1 ... an = Ci b1 ... bn replace bi with ai; auto || replace bi with ai by apply typeofbi_prod ; auto *) Proofview.Goal.nf_enter begin fun gls -> let gl = Proofview.Goal.concl gls in match (kind_of_term gl) with | App (c,ca) -> ( match (kind_of_term c) with | Ind (indeq, u) -> if eq_gr (IndRef indeq) Coqlib.glob_eq then Tacticals.New.tclTHEN (do_replace_bl mode bl_scheme_key ind (!avoid) nparrec (ca.(2)) (ca.(1))) Auto.default_auto else Tacticals.New.tclZEROMSG (str "Failure while solving Boolean->Leibniz.") | _ -> Tacticals.New.tclZEROMSG (str" Failure while solving Boolean->Leibniz.") ) | _ -> Tacticals.New.tclZEROMSG (str "Failure while solving Boolean->Leibniz.") end ] end let bl_scheme_kind_aux = ref (fun _ -> failwith "Undefined") let side_effect_of_mode = function | Declare.KernelVerbose -> false | Declare.KernelSilent -> true | Declare.UserVerbose -> false let make_bl_scheme mode mind = let mib = Global.lookup_mind mind in if not (Int.equal (Array.length mib.mind_packets) 1) then errorlabstrm "" (str "Automatic building of boolean->Leibniz lemmas not supported"); let ind = (mind,0) in let nparams = mib.mind_nparams in let nparrec = mib.mind_nparams_rec in let lnonparrec,lnamesparrec = (* TODO subst *) context_chop (nparams-nparrec) mib.mind_params_ctxt in let bl_goal, eff = compute_bl_goal ind lnamesparrec nparrec in let ctx = Evd.empty_evar_universe_context (*FIXME univs *) in let side_eff = side_effect_of_mode mode in let (ans, _, ctx) = Pfedit.build_by_tactic ~side_eff (Global.env()) ctx bl_goal (compute_bl_tact mode (!bl_scheme_kind_aux()) (ind, Univ.Instance.empty) lnamesparrec nparrec) in ([|ans|], ctx), eff let bl_scheme_kind = declare_mutual_scheme_object "_dec_bl" make_bl_scheme let _ = bl_scheme_kind_aux := fun () -> bl_scheme_kind (**********************************************************************) (* Leibniz->Boolean *) let compute_lb_goal ind lnamesparrec nparrec = let list_id = list_id lnamesparrec in let eq = Lazy.force eq and tt = Lazy.force tt and bb = Lazy.force bb in let eqI, eff = eqI ind lnamesparrec in let create_input c = let x = Id.of_string "x" and y = Id.of_string "y" in let lb_typ = List.map (fun (s,seq,_,_) -> mkNamedProd x (mkVar s) ( mkNamedProd y (mkVar s) ( mkArrow ( mkApp(eq,[|mkVar s;mkVar x;mkVar y|])) ( mkApp(eq,[|bb;mkApp(mkVar seq,[|mkVar x;mkVar y|]);tt|])) )) ) list_id in let lb_input = List.fold_left2 ( fun a (s,_,_,slb) b -> mkNamedProd slb b a ) c (List.rev list_id) (List.rev lb_typ) in let eqs_typ = List.map (fun (s,_,_,_) -> mkProd(Anonymous,mkVar s,mkProd(Anonymous,mkVar s,bb)) ) list_id in let eq_input = List.fold_left2 ( fun a (s,seq,_,_) b -> mkNamedProd seq b a ) lb_input (List.rev list_id) (List.rev eqs_typ) in List.fold_left (fun a (n,_,t) -> mkNamedProd (match n with Name s -> s | Anonymous -> Id.of_string "A") t a) eq_input lnamesparrec in let n = Id.of_string "x" and m = Id.of_string "y" in let u = Univ.Instance.empty in create_input ( mkNamedProd n (mkFullInd (ind,u) nparrec) ( mkNamedProd m (mkFullInd (ind,u) (nparrec+1)) ( mkArrow (mkApp(eq,[|mkFullInd (ind,u) (nparrec+2);mkVar n;mkVar m|])) (mkApp(eq,[|bb;mkApp(eqI,[|mkVar n;mkVar m|]);tt|])) ))), eff let compute_lb_tact mode lb_scheme_key ind lnamesparrec nparrec = let list_id = list_id lnamesparrec in let avoid = ref [] in let first_intros = ( List.map (fun (s,_,_,_) -> s ) list_id ) @ ( List.map (fun (_,seq,_,_) -> seq) list_id ) @ ( List.map (fun (_,_,_,slb) -> slb) list_id ) in let fresh_id s gl = Tacmach.New.of_old begin fun gsig -> let fresh = fresh_id (!avoid) s gsig in avoid := fresh::(!avoid); fresh end gl in Proofview.Goal.nf_enter begin fun gl -> let fresh_first_intros = List.map (fun id -> fresh_id id gl) first_intros in let freshn = fresh_id (Id.of_string "x") gl in let freshm = fresh_id (Id.of_string "y") gl in let freshz = fresh_id (Id.of_string "Z") gl in (* try with *) Tacticals.New.tclTHENLIST [ intros_using fresh_first_intros; intro_using freshn ; induct_on (mkVar freshn); intro_using freshm; destruct_on (mkVar freshm); intro_using freshz; intros; Tacticals.New.tclTRY ( Tacticals.New.tclORELSE reflexivity (Equality.discr_tac false None) ); Equality.inj None false None (mkVar freshz,NoBindings); intros; (Proofview.V82.tactic simpl_in_concl); Auto.default_auto; Tacticals.New.tclREPEAT ( Tacticals.New.tclTHENLIST [apply (andb_true_intro()); simplest_split ;Auto.default_auto ] ); Proofview.Goal.nf_enter begin fun gls -> let gl = Proofview.Goal.concl gls in (* assume the goal to be eq (eq_type ...) = true *) match (kind_of_term gl) with | App(c,ca) -> (match (kind_of_term ca.(1)) with | App(c',ca') -> let n = Array.length ca' in do_replace_lb mode lb_scheme_key (!avoid) nparrec ca'.(n-2) ca'.(n-1) | _ -> Tacticals.New.tclZEROMSG (str "Failure while solving Leibniz->Boolean.") ) | _ -> Tacticals.New.tclZEROMSG (str "Failure while solving Leibniz->Boolean.") end ] end let lb_scheme_kind_aux = ref (fun () -> failwith "Undefined") let make_lb_scheme mode mind = let mib = Global.lookup_mind mind in if not (Int.equal (Array.length mib.mind_packets) 1) then errorlabstrm "" (str "Automatic building of Leibniz->boolean lemmas not supported"); let ind = (mind,0) in let nparams = mib.mind_nparams in let nparrec = mib.mind_nparams_rec in let lnonparrec,lnamesparrec = context_chop (nparams-nparrec) mib.mind_params_ctxt in let lb_goal, eff = compute_lb_goal ind lnamesparrec nparrec in let ctx = Evd.empty_evar_universe_context in let side_eff = side_effect_of_mode mode in let (ans, _, ctx) = Pfedit.build_by_tactic ~side_eff (Global.env()) ctx lb_goal (compute_lb_tact mode (!lb_scheme_kind_aux()) ind lnamesparrec nparrec) in ([|ans|], ctx (* FIXME *)), eff let lb_scheme_kind = declare_mutual_scheme_object "_dec_lb" make_lb_scheme let _ = lb_scheme_kind_aux := fun () -> lb_scheme_kind (**********************************************************************) (* Decidable equality *) let check_not_is_defined () = try ignore (Coqlib.build_coq_not ()) with e when Errors.noncritical e -> raise (UndefinedCst "not") (* {n=m}+{n<>m} part *) let compute_dec_goal ind lnamesparrec nparrec = check_not_is_defined (); let eq = Lazy.force eq and tt = Lazy.force tt and bb = Lazy.force bb in let list_id = list_id lnamesparrec in let create_input c = let x = Id.of_string "x" and y = Id.of_string "y" in let lb_typ = List.map (fun (s,seq,_,_) -> mkNamedProd x (mkVar s) ( mkNamedProd y (mkVar s) ( mkArrow ( mkApp(eq,[|mkVar s;mkVar x;mkVar y|])) ( mkApp(eq,[|bb;mkApp(mkVar seq,[|mkVar x;mkVar y|]);tt|])) )) ) list_id in let bl_typ = List.map (fun (s,seq,_,_) -> mkNamedProd x (mkVar s) ( mkNamedProd y (mkVar s) ( mkArrow ( mkApp(eq,[|bb;mkApp(mkVar seq,[|mkVar x;mkVar y|]);tt|])) ( mkApp(eq,[|mkVar s;mkVar x;mkVar y|])) )) ) list_id in let lb_input = List.fold_left2 ( fun a (s,_,_,slb) b -> mkNamedProd slb b a ) c (List.rev list_id) (List.rev lb_typ) in let bl_input = List.fold_left2 ( fun a (s,_,sbl,_) b -> mkNamedProd sbl b a ) lb_input (List.rev list_id) (List.rev bl_typ) in let eqs_typ = List.map (fun (s,_,_,_) -> mkProd(Anonymous,mkVar s,mkProd(Anonymous,mkVar s,bb)) ) list_id in let eq_input = List.fold_left2 ( fun a (s,seq,_,_) b -> mkNamedProd seq b a ) bl_input (List.rev list_id) (List.rev eqs_typ) in List.fold_left (fun a (n,_,t) -> mkNamedProd (match n with Name s -> s | Anonymous -> Id.of_string "A") t a) eq_input lnamesparrec in let n = Id.of_string "x" and m = Id.of_string "y" in let eqnm = mkApp(eq,[|mkFullInd ind (2*nparrec+2);mkVar n;mkVar m|]) in create_input ( mkNamedProd n (mkFullInd ind (2*nparrec)) ( mkNamedProd m (mkFullInd ind (2*nparrec+1)) ( mkApp(sumbool(),[|eqnm;mkApp (Coqlib.build_coq_not(),[|eqnm|])|]) ) ) ) let compute_dec_tact ind lnamesparrec nparrec = let eq = Lazy.force eq and tt = Lazy.force tt and ff = Lazy.force ff and bb = Lazy.force bb in let list_id = list_id lnamesparrec in let eqI, eff = eqI ind lnamesparrec in let avoid = ref [] in let eqtrue x = mkApp(eq,[|bb;x;tt|]) in let eqfalse x = mkApp(eq,[|bb;x;ff|]) in let first_intros = ( List.map (fun (s,_,_,_) -> s ) list_id ) @ ( List.map (fun (_,seq,_,_) -> seq) list_id ) @ ( List.map (fun (_,_,sbl,_) -> sbl) list_id ) @ ( List.map (fun (_,_,_,slb) -> slb) list_id ) in let fresh_id s gl = Tacmach.New.of_old begin fun gsig -> let fresh = fresh_id (!avoid) s gsig in avoid := fresh::(!avoid); fresh end gl in Proofview.Goal.nf_enter begin fun gl -> let fresh_first_intros = List.map (fun id -> fresh_id id gl) first_intros in let freshn = fresh_id (Id.of_string "x") gl in let freshm = fresh_id (Id.of_string "y") gl in let freshH = fresh_id (Id.of_string "H") gl in let eqbnm = mkApp(eqI,[|mkVar freshn;mkVar freshm|]) in let arfresh = Array.of_list fresh_first_intros in let xargs = Array.sub arfresh 0 (2*nparrec) in begin try let c, eff = find_scheme bl_scheme_kind ind in Proofview.tclUNIT (mkConst c,eff) with Not_found -> Tacticals.New.tclZEROMSG (str "Error during the decidability part, boolean to leibniz equality is required.") end >>= fun (blI,eff') -> begin try let c, eff = find_scheme lb_scheme_kind ind in Proofview.tclUNIT (mkConst c,eff) with Not_found -> Tacticals.New.tclZEROMSG (str "Error during the decidability part, leibniz to boolean equality is required.") end >>= fun (lbI,eff'') -> let eff = (Declareops.union_side_effects eff'' (Declareops.union_side_effects eff' eff)) in Tacticals.New.tclTHENLIST [ Proofview.tclEFFECTS eff; intros_using fresh_first_intros; intros_using [freshn;freshm]; (*we do this so we don't have to prove the same goal twice *) assert_by (Name freshH) ( mkApp(sumbool(),[|eqtrue eqbnm; eqfalse eqbnm|]) ) (Tacticals.New.tclTHEN (destruct_on eqbnm) Auto.default_auto); Proofview.Goal.nf_enter begin fun gl -> let freshH2 = fresh_id (Id.of_string "H") gl in Tacticals.New.tclTHENS (destruct_on_using (mkVar freshH) freshH2) [ (* left *) Tacticals.New.tclTHENLIST [ simplest_left; apply (mkApp(blI,Array.map(fun x->mkVar x) xargs)); Auto.default_auto ] ; (*right *) Proofview.Goal.nf_enter begin fun gl -> let freshH3 = fresh_id (Id.of_string "H") gl in Tacticals.New.tclTHENLIST [ simplest_right ; Proofview.V82.tactic (unfold_constr (Lazy.force Coqlib.coq_not_ref)); intro; Equality.subst_all (); assert_by (Name freshH3) (mkApp(eq,[|bb;mkApp(eqI,[|mkVar freshm;mkVar freshm|]);tt|])) (Tacticals.New.tclTHENLIST [ apply (mkApp(lbI,Array.map (fun x->mkVar x) xargs)); Auto.default_auto ]); Equality.general_rewrite_bindings_in true Locus.AllOccurrences true false (List.hd !avoid) ((mkVar (List.hd (List.tl !avoid))), NoBindings ) true; Equality.discr_tac false None ] end ] end ] end let make_eq_decidability mode mind = let mib = Global.lookup_mind mind in if not (Int.equal (Array.length mib.mind_packets) 1) then raise DecidabilityMutualNotSupported; let ind = (mind,0) in let nparams = mib.mind_nparams in let nparrec = mib.mind_nparams_rec in let u = Univ.Instance.empty in let ctx = Evd.empty_evar_universe_context (* FIXME *)in let lnonparrec,lnamesparrec = context_chop (nparams-nparrec) mib.mind_params_ctxt in let side_eff = side_effect_of_mode mode in let (ans, _, ctx) = Pfedit.build_by_tactic ~side_eff (Global.env()) ctx (compute_dec_goal (ind,u) lnamesparrec nparrec) (compute_dec_tact ind lnamesparrec nparrec) in ([|ans|], ctx), Declareops.no_seff let eq_dec_scheme_kind = declare_mutual_scheme_object "_eq_dec" make_eq_decidability (* The eq_dec_scheme proofs depend on the equality and discr tactics but the inj tactics, that comes with discr, depends on the eq_dec_scheme... *) let _ = Equality.set_eq_dec_scheme_kind eq_dec_scheme_kind