(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* (List.rev acc, l2) | (n, ((_,Some _,_ as h)::t)) -> chop_aux (h::acc) (n, t) | (n, (h::t)) -> chop_aux (h::acc) (pred n, t) | (_, []) -> failwith "context_chop" in chop_aux [] (k,ctx) let quick_chop n l = let rec kick_last = function | t::[] -> [] | t::q -> t::(kick_last q) | [] -> failwith "kick_last" and aux = function | (0,l') -> l' | (n,h::t) -> aux (n-1,t) | _ -> failwith "quick_chop" in if n > (List.length l) then failwith "quick_chop args" else kick_last (aux (n,l) ) let rec deconstruct_type t = let l,r = decompose_prod t in (List.map (fun (_,b) -> b) (List.rev l))@[r] let subst_in_constr (_,subst,(ind,const)) = let ind' = (subst_kn subst (fst ind)),(snd ind) and const' = subst_mps subst const in ind',const' exception EqNotFound of string exception EqUnknown of string (* Some pre declaration of constant we are going to use *) let bb = constr_of_global Coqlib.glob_bool let andb_prop = fun _ -> (Coqlib.build_bool_type()).Coqlib.andb_prop let andb_true_intro = fun _ -> (Coqlib.build_bool_type()).Coqlib.andb_true_intro let tt = constr_of_global Coqlib.glob_true let ff = constr_of_global Coqlib.glob_false let eq = constr_of_global Coqlib.glob_eq let sumbool = Coqlib.build_coq_sumbool let andb = fun _ -> (Coqlib.build_bool_type()).Coqlib.andb (* reconstruct the inductive with the correct deBruijn indexes *) let mkFullInd ind n = let mib = Global.lookup_mind (fst ind) in let nparams = mib.mind_nparams in let nparrec = mib.mind_nparams_rec in (* params context divided *) let lnonparrec,lnamesparrec = context_chop (nparams-nparrec) mib.mind_params_ctxt in if nparrec > 0 then mkApp (mkInd ind, Array.of_list(extended_rel_list (nparrec+n) lnamesparrec)) else mkInd ind let make_eq_scheme sp = (* fetching global env *) let env = Global.env() in (* fetching the mutual inductive body *) let mib = Global.lookup_mind sp in (* number of inductives in the mutual *) let nb_ind = Array.length mib.mind_packets in (* number of params in the type *) let nparams = mib.mind_nparams in let nparrec = mib.mind_nparams_rec in (* params context divided *) let lnonparrec,lnamesparrec = context_chop (nparams-nparrec) mib.mind_params_ctxt in (* predef coq's boolean type *) (* rec name *) let rec_name i =(string_of_id (Array.get mib.mind_packets i).mind_typename)^ "_eqrec" in (* construct the "fun A B ... N, eqA eqB eqC ... N => fixpoint" part *) let create_input c = let myArrow u v = mkArrow u (lift 1 v) and eqName = function | Name s -> id_of_string ("eq_"^(string_of_id s)) | Anonymous -> id_of_string "eq_A" in let ext_rel_list = extended_rel_list 0 lnamesparrec in let lift_cnt = ref 0 in let eqs_typ = List.map (fun aa -> let a = lift !lift_cnt aa in incr lift_cnt; myArrow a (myArrow a bb) ) ext_rel_list in let eq_input = List.fold_left2 ( fun a b (n,_,_) -> (* mkLambda(n,b,a) ) *) (* here I leave the Naming thingy so that the type of the function is more readable for the user *) mkNamedLambda (eqName n) b a ) c (List.rev eqs_typ) lnamesparrec in List.fold_left (fun a (n,_,t) ->(* mkLambda(n,t,a)) eq_input rel_list *) (* Same here , hoping the auto renaming will do something good ;) *) mkNamedLambda (match n with Name s -> s | Anonymous -> id_of_string "A") t a) eq_input lnamesparrec in let make_one_eq cur = let ind = sp,cur in (* current inductive we are working on *) let cur_packet = mib.mind_packets.(snd ind) in (* Inductive toto : [rettyp] := *) let rettyp = Inductive.type_of_inductive env (mib,cur_packet) in (* split rettyp in a list without the non rec params and the last -> e.g. Inductive vec (A:Set) : nat -> Set := ... will do [nat] *) let rettyp_l = quick_chop nparrec (deconstruct_type rettyp) in (* give a type A, this function tries to find the equality on A declared previously *) (* nlist = the number of args (A , B , ... ) eqA = the deBruijn index of the first eq param ndx = how much to translate due to the 2nd Case *) let compute_A_equality rel_list nlist eqA ndx t = let lifti = ndx in let rec aux c a = match c with | Rel x -> mkRel (x-nlist+ndx) | Var x -> mkVar (id_of_string ("eq_"^(string_of_id x))) | Cast (x,_,_) -> aux (kind_of_term x) a | App (x,newa) -> aux (kind_of_term x) newa | Ind (sp',i) -> if sp=sp' then mkRel(eqA-nlist-i+nb_ind-1) else ( try let eq = find_eq_scheme (sp',i) and eqa = Array.map (fun x -> aux (kind_of_term x) [||] ) a in let args = Array.append (Array.map (fun x->lift lifti x) a) eqa in if args = [||] then eq else mkApp (eq,Array.append (Array.map (fun x->lift lifti x) a) eqa) with Not_found -> raise(EqNotFound (string_of_kn sp')) ) | Sort _ -> raise (EqUnknown "Sort" ) | Prod _ -> raise (EqUnknown "Prod" ) | Lambda _-> raise (EqUnknown "Lambda") | LetIn _ -> raise (EqUnknown "LetIn") | Const kn -> let mp,dir,lbl= repr_con kn in mkConst (make_con mp dir ( mk_label ("eq_"^(string_of_label lbl)))) | Construct _ -> raise (EqUnknown "Construct") | Case _ -> raise (EqUnknown "Case") | CoFix _ -> raise (EqUnknown "CoFix") | Fix _ -> raise (EqUnknown "Fix") | Meta _ -> raise (EqUnknown "Meta") | Evar _ -> raise (EqUnknown "Evar") in aux t [||] in (* construct the predicate for the Case part*) let do_predicate rel_list n = List.fold_left (fun a b -> mkLambda(Anonymous,b,a)) (mkLambda (Anonymous, mkFullInd ind (n+3+(List.length rettyp_l)+nb_ind-1), bb)) (List.rev rettyp_l) in (* make_one_eq *) (* do the [| C1 ... => match Y with ... end ... Cn => match Y with ... end |] part *) let ci = make_case_info env ind MatchStyle in let constrs n = get_constructors env (make_ind_family (ind, extended_rel_list (n+nb_ind-1) mib.mind_params_ctxt)) in let constrsi = constrs (3+nparrec) in let n = Array.length constrsi in let ar = Array.create n ff in for i=0 to n-1 do let nb_cstr_args = List.length constrsi.(i).cs_args in let ar2 = Array.create n ff in let constrsj = constrs (3+nparrec+nb_cstr_args) in for j=0 to n-1 do if (i=j) then ar2.(j) <- let cc = (match nb_cstr_args with | 0 -> tt | _ -> let eqs = Array.make nb_cstr_args tt in for ndx = 0 to nb_cstr_args-1 do let _,_,cc = List.nth constrsi.(i).cs_args ndx in let eqA = compute_A_equality rel_list nparrec (nparrec+3+2*nb_cstr_args) (nb_cstr_args+ndx+1) (kind_of_term cc) in Array.set eqs ndx (mkApp (eqA, [|mkRel (ndx+1+nb_cstr_args);mkRel (ndx+1)|] )) done; Array.fold_left (fun a b -> mkApp (andb(),[|b;a|])) (eqs.(0)) (Array.sub eqs 1 (nb_cstr_args - 1)) ) in (List.fold_left (fun a (p,q,r) -> mkLambda (p,r,a)) cc (constrsj.(j).cs_args) ) else ar2.(j) <- (List.fold_left (fun a (p,q,r) -> mkLambda (p,r,a)) ff (constrsj.(j).cs_args) ) done; ar.(i) <- (List.fold_left (fun a (p,q,r) -> mkLambda (p,r,a)) (mkCase (ci,do_predicate rel_list nb_cstr_args, mkVar (id_of_string "Y") ,ar2)) (constrsi.(i).cs_args)) done; mkNamedLambda (id_of_string "X") (mkFullInd ind (nb_ind-1+1)) ( mkNamedLambda (id_of_string "Y") (mkFullInd ind (nb_ind-1+2)) ( mkCase (ci, do_predicate rel_list 0,mkVar (id_of_string "X"),ar))) in (* make_eq_scheme *) try let names = Array.make nb_ind Anonymous and types = Array.make nb_ind mkSet and cores = Array.make nb_ind mkSet and res = Array.make nb_ind mkSet in for i=0 to (nb_ind-1) do names.(i) <- Name (id_of_string (rec_name i)); types.(i) <- mkArrow (mkFullInd (sp,i) 0) (mkArrow (mkFullInd (sp,i) 1) bb); cores.(i) <- make_one_eq i done; if (string_of_mp (modpath sp ))="Coq.Init.Logic" then print_string "Logic time, do nothing.\n" else ( for i=0 to (nb_ind-1) do let cpack = Array.get mib.mind_packets i in if check_eq_scheme (sp,i) then message ("Boolean equality is already defined on "^ (string_of_id cpack.mind_typename)^".") else ( let fix = mkFix (((Array.make nb_ind 0),i),(names,types,cores)) in res.(i) <- create_input fix ) done; ); res with | EqUnknown s -> error ("Type unexpected ("^s^ ") during boolean eq computation, please report.") | EqNotFound s -> error ("Boolean equality on "^s^ " is missing, equality will not be defined.") | _ -> error ("Unknown exception during boolean equality creation,"^ " the equality will not be defined.") (* This function tryies to get the [inductive] between a constr the constr should be Ind i or App(Ind i,[|args|]) *) let destruct_ind c = try let u,v = destApp c in let indc = destInd u in indc,v with _-> let indc = destInd c in indc,[||] (* In the followind, avoid is the list of names to avoid. If the args of the Inductive type are A1 ... An then avoid should be [| lb_An ... lb _A1 (resp. bl_An ... bl_A1) eq_An .... eq_A1 An ... A1 |] so from Ai we can find the the correct eq_Ai bl_ai or lb_ai *) (* used in the leib -> bool side*) let do_replace_lb aavoid narg gls p q = let avoid = Array.of_list aavoid in let do_arg v offset = try let x = narg*offset in let s = destVar v in let n = Array.length avoid in let rec find i = if avoid.(n-i) = s then avoid.(n-i-x) else (if i (* if this happen then the args have to be already declared as a Parameter*) ( let mp,dir,lbl = repr_con (destConst v) in mkConst (make_con mp dir (mk_label ( if offset=1 then ("eq_"^(string_of_label lbl)) else ((string_of_label lbl)^"_lb") ))) ) in let type_of_pq = pf_type_of gls p in let u,v = destruct_ind type_of_pq in let lb_type_of_p = try find_lb_proof u with Not_found -> (* spiwack: the format of this error message should probably be improved. *) let err_msg = msg_with Format.str_formatter (str "Leibniz->boolean:" ++ str "You have to declare the" ++ str "decidability over " ++ Printer.pr_constr type_of_pq ++ str " first."); Format.flush_str_formatter () in error err_msg in let lb_args = Array.append (Array.append (Array.map (fun x -> x) v) (Array.map (fun x -> do_arg x 1) v)) (Array.map (fun x -> do_arg x 2) v) in let app = if lb_args = [||] then lb_type_of_p else mkApp (lb_type_of_p,lb_args) in [Equality.replace p q ; apply app ; Auto.default_auto] (* used in the bool -> leib side *) let do_replace_bl ind gls aavoid narg lft rgt = let avoid = Array.of_list aavoid in let do_arg v offset = try let x = narg*offset in let s = destVar v in let n = Array.length avoid in let rec find i = if avoid.(n-i) = s then avoid.(n-i-x) else (if i (* if this happen then the args have to be already declared as a Parameter*) ( let mp,dir,lbl = repr_con (destConst v) in mkConst (make_con mp dir (mk_label ( if offset=1 then ("eq_"^(string_of_label lbl)) else ((string_of_label lbl)^"_bl") ))) ) in let rec aux l1 l2 = match (l1,l2) with | (t1::q1,t2::q2) -> let tt1 = pf_type_of gls t1 in if t1=t2 then aux q1 q2 else ( let u,v = try destruct_ind tt1 (* trick so that the good sequence is returned*) with _ -> ind,[||] in if u = ind then (Equality.replace t1 t2)::(Auto.default_auto)::(aux q1 q2) else ( let bl_t1 = try find_bl_proof u with Not_found -> (* spiwack: the format of this error message should probably be improved. *) let err_msg = msg_with Format.str_formatter (str "boolean->Leibniz:" ++ str "You have to declare the" ++ str "decidability over " ++ Printer.pr_constr tt1 ++ str " first."); Format.flush_str_formatter () in error err_msg in let bl_args = Array.append (Array.append (Array.map (fun x -> x) v) (Array.map (fun x -> do_arg x 1) v)) (Array.map (fun x -> do_arg x 2) v ) in let app = if bl_args = [||] then bl_t1 else mkApp (bl_t1,bl_args) in (Equality.replace_by t1 t2 (tclTHEN (apply app) (Auto.default_auto)))::(aux q1 q2) ) ) | ([],[]) -> [] | _ -> error "Both side of the equality must have the same arity." in let (ind1,ca1) = try destApp lft with _ -> error "replace failed." and (ind2,ca2) = try destApp rgt with _ -> error "replace failed." in let (sp1,i1) = try destInd ind1 with _ -> (try fst (destConstruct ind1) with _ -> error "The expected type is an inductive one.") and (sp2,i2) = try destInd ind2 with _ -> (try fst (destConstruct ind2) with _ -> error "The expected type is an inductive one.") in if (sp1 <> sp2) || (i1 <> i2) then (error "Eq should be on the same type") else (aux (Array.to_list ca1) (Array.to_list ca2)) (* create, from a list of ids [i1,i2,...,in] the list [(in,eq_in,in_bl,in_al),,...,(i1,eq_i1,i1_bl_i1_al )] *) let list_id l = List.fold_left ( fun a (n,_,t) -> let s' = match n with Name s -> string_of_id s | Anonymous -> "A" in (id_of_string s',id_of_string ("eq_"^s'), id_of_string (s'^"_bl"), id_of_string (s'^"_lb")) ::a ) [] l (* build the right eq_I A B.. N eq_A .. eq_N *) let eqI ind l = let list_id = list_id l in let eA = Array.of_list((List.map (fun (s,_,_,_) -> mkVar s) list_id)@ (List.map (fun (_,seq,_,_)-> mkVar seq) list_id )) and e = try find_eq_scheme ind with Not_found -> error ("The boolean equality on "^(string_of_kn (fst ind))^" is needed."); in (if eA = [||] then e else mkApp(e,eA)) let compute_bl_goal ind lnamesparrec nparrec = let eqI = eqI ind lnamesparrec in let list_id = list_id lnamesparrec in let create_input c = let x = id_of_string "x" and y = id_of_string "y" in let bl_typ = List.map (fun (s,seq,_,_) -> mkNamedProd x (mkVar s) ( mkNamedProd y (mkVar s) ( mkArrow ( mkApp(eq,[|bb;mkApp(mkVar seq,[|mkVar x;mkVar y|]);tt|])) ( mkApp(eq,[|mkVar s;mkVar x;mkVar y|])) )) ) list_id in let bl_input = List.fold_left2 ( fun a (s,_,sbl,_) b -> mkNamedProd sbl b a ) c (List.rev list_id) (List.rev bl_typ) in let eqs_typ = List.map (fun (s,_,_,_) -> mkProd(Anonymous,mkVar s,mkProd(Anonymous,mkVar s,bb)) ) list_id in let eq_input = List.fold_left2 ( fun a (s,seq,_,_) b -> mkNamedProd seq b a ) bl_input (List.rev list_id) (List.rev eqs_typ) in List.fold_left (fun a (n,_,t) -> mkNamedProd (match n with Name s -> s | Anonymous -> id_of_string "A") t a) eq_input lnamesparrec in let n = id_of_string "n" and m = id_of_string "m" in create_input ( mkNamedProd n (mkFullInd ind nparrec) ( mkNamedProd m (mkFullInd ind (nparrec+1)) ( mkArrow (mkApp(eq,[|bb;mkApp(eqI,[|mkVar n;mkVar m|]);tt|])) (mkApp(eq,[|mkFullInd ind (nparrec+3);mkVar n;mkVar m|])) ))) let compute_bl_tact ind lnamesparrec nparrec = let list_id = list_id lnamesparrec in let avoid = ref [] in let gsig = top_goal_of_pftreestate (Pfedit.get_pftreestate()) in let first_intros = ( List.map (fun (s,_,_,_) -> s ) list_id ) @ ( List.map (fun (_,seq,_,_ ) -> seq) list_id ) @ ( List.map (fun (_,_,sbl,_ ) -> sbl) list_id ) in let fresh_first_intros = List.map ( fun s -> let fresh = fresh_id (!avoid) s gsig in avoid := fresh::(!avoid); fresh ) first_intros in let freshn = fresh_id (!avoid) (id_of_string "n") gsig in let freshm = avoid := freshn::(!avoid); fresh_id (!avoid) (id_of_string "m") gsig in let freshz = avoid := freshm::(!avoid); fresh_id (!avoid) (id_of_string "Z") gsig in (* try with *) avoid := freshz::(!avoid); Pfedit.by ( tclTHENSEQ [ intros_using fresh_first_intros; intro_using freshn ; new_induct false [ (Tacexpr.ElimOnConstr ((mkVar freshn), Rawterm.NoBindings))] None Genarg.IntroAnonymous; intro_using freshm; new_destruct false [ (Tacexpr.ElimOnConstr ((mkVar freshm), Rawterm.NoBindings))] None Genarg.IntroAnonymous; intro_using freshz; intros; tclTRY ( tclORELSE reflexivity (Equality.discr_tac None) ); simpl_in_hyp (([],freshz),Tacexpr.InHyp); (* repeat ( apply andb_prop in z;let z1:= fresh "Z" in destruct z as [z1 z]). *) tclREPEAT ( tclTHENSEQ [ apply_in false freshz [(andb_prop()),Rawterm.NoBindings]; fun gl -> let fresht = fresh_id (!avoid) (id_of_string "Z") gsig in avoid := fresht::(!avoid); (new_destruct false [Tacexpr.ElimOnConstr ((mkVar freshz,Rawterm.NoBindings))] None ( Genarg.IntroOrAndPattern [[ Genarg.IntroIdentifier fresht; Genarg.IntroIdentifier freshz]])) gl ]); (* Ci a1 ... an = Ci b1 ... bn replace bi with ai; auto || replace bi with ai by apply typeofbi_prod ; auto *) fun gls-> let gl = (gls.Evd.it).Evd.evar_concl in match (kind_of_term gl) with | App (c,ca) -> ( match (kind_of_term c) with | Ind (i1,i2) -> if(string_of_label (label i1) = "eq") then ( tclTHENSEQ (do_replace_bl ind gls (!avoid) nparrec (ca.(2)) (ca.(1))) gls ) else (error "Failure while solving Boolean->Leibniz.") | _ -> error "Failure while solving Boolean->Leibniz." ) | _ -> error "Failure while solving Boolean->Leibniz." ] ) let compute_lb_goal ind lnamesparrec nparrec = let list_id = list_id lnamesparrec in let eqI = eqI ind lnamesparrec in let create_input c = let x = id_of_string "x" and y = id_of_string "y" in let lb_typ = List.map (fun (s,seq,_,_) -> mkNamedProd x (mkVar s) ( mkNamedProd y (mkVar s) ( mkArrow ( mkApp(eq,[|mkVar s;mkVar x;mkVar y|])) ( mkApp(eq,[|bb;mkApp(mkVar seq,[|mkVar x;mkVar y|]);tt|])) )) ) list_id in let lb_input = List.fold_left2 ( fun a (s,_,_,slb) b -> mkNamedProd slb b a ) c (List.rev list_id) (List.rev lb_typ) in let eqs_typ = List.map (fun (s,_,_,_) -> mkProd(Anonymous,mkVar s,mkProd(Anonymous,mkVar s,bb)) ) list_id in let eq_input = List.fold_left2 ( fun a (s,seq,_,_) b -> mkNamedProd seq b a ) lb_input (List.rev list_id) (List.rev eqs_typ) in List.fold_left (fun a (n,_,t) -> mkNamedProd (match n with Name s -> s | Anonymous -> id_of_string "A") t a) eq_input lnamesparrec in let n = id_of_string "n" and m = id_of_string "m" in create_input ( mkNamedProd n (mkFullInd ind nparrec) ( mkNamedProd m (mkFullInd ind (nparrec+1)) ( mkArrow (mkApp(eq,[|mkFullInd ind (nparrec+2);mkVar n;mkVar m|])) (mkApp(eq,[|bb;mkApp(eqI,[|mkVar n;mkVar m|]);tt|])) ))) let compute_lb_tact ind lnamesparrec nparrec = let list_id = list_id lnamesparrec in let avoid = ref [] in let gsig = top_goal_of_pftreestate (Pfedit.get_pftreestate()) in let first_intros = ( List.map (fun (s,_,_,_) -> s ) list_id ) @ ( List.map (fun (_,seq,_,_) -> seq) list_id ) @ ( List.map (fun (_,_,_,slb) -> slb) list_id ) in let fresh_first_intros = List.map ( fun s -> let fresh = fresh_id (!avoid) s gsig in avoid := fresh::(!avoid); fresh ) first_intros in let freshn = fresh_id (!avoid) (id_of_string "n") gsig in let freshm = avoid := freshn::(!avoid); fresh_id (!avoid) (id_of_string "m") gsig in let freshz = avoid := freshm::(!avoid); fresh_id (!avoid) (id_of_string "Z") gsig in (* try with *) avoid := freshz::(!avoid); Pfedit.by ( tclTHENSEQ [ intros_using fresh_first_intros; intro_using freshn ; new_induct false [Tacexpr.ElimOnConstr ((mkVar freshn),Rawterm.NoBindings)] None Genarg.IntroAnonymous; intro_using freshm; new_destruct false [Tacexpr.ElimOnConstr ((mkVar freshm),Rawterm.NoBindings)] None Genarg.IntroAnonymous; intro_using freshz; intros; tclTRY ( tclORELSE reflexivity (Equality.discr_tac None) ); Equality.inj [] freshz; intros; simpl_in_concl; Auto.default_auto; tclREPEAT ( tclTHENSEQ [apply (andb_true_intro()); simplest_split ;Auto.default_auto ] ); fun gls -> let gl = (gls.Evd.it).Evd.evar_concl in (* assume the goal to be eq (eq_type ...) = true *) match (kind_of_term gl) with | App(c,ca) -> (match (kind_of_term ca.(1)) with | App(c',ca') -> let n = Array.length ca' in tclTHENSEQ (do_replace_lb (!avoid) nparrec gls ca'.(n-2) ca'.(n-1)) gls | _ -> error "Failure while solving Leibniz->Boolean." ) | _ -> error "Failure while solving Leibniz->Boolean." ] ) (* {n=m}+{n<>m} part *) let compute_dec_goal ind lnamesparrec nparrec = let list_id = list_id lnamesparrec in let create_input c = let x = id_of_string "x" and y = id_of_string "y" in let lb_typ = List.map (fun (s,seq,_,_) -> mkNamedProd x (mkVar s) ( mkNamedProd y (mkVar s) ( mkArrow ( mkApp(eq,[|mkVar s;mkVar x;mkVar y|])) ( mkApp(eq,[|bb;mkApp(mkVar seq,[|mkVar x;mkVar y|]);tt|])) )) ) list_id in let bl_typ = List.map (fun (s,seq,_,_) -> mkNamedProd x (mkVar s) ( mkNamedProd y (mkVar s) ( mkArrow ( mkApp(eq,[|bb;mkApp(mkVar seq,[|mkVar x;mkVar y|]);tt|])) ( mkApp(eq,[|mkVar s;mkVar x;mkVar y|])) )) ) list_id in let lb_input = List.fold_left2 ( fun a (s,_,_,slb) b -> mkNamedProd slb b a ) c (List.rev list_id) (List.rev lb_typ) in let bl_input = List.fold_left2 ( fun a (s,_,sbl,_) b -> mkNamedProd sbl b a ) lb_input (List.rev list_id) (List.rev bl_typ) in let eqs_typ = List.map (fun (s,_,_,_) -> mkProd(Anonymous,mkVar s,mkProd(Anonymous,mkVar s,bb)) ) list_id in let eq_input = List.fold_left2 ( fun a (s,seq,_,_) b -> mkNamedProd seq b a ) bl_input (List.rev list_id) (List.rev eqs_typ) in List.fold_left (fun a (n,_,t) -> mkNamedProd (match n with Name s -> s | Anonymous -> id_of_string "A") t a) eq_input lnamesparrec in let n = id_of_string "n" and m = id_of_string "m" in let eqnm = mkApp(eq,[|mkFullInd ind (2*nparrec+2);mkVar n;mkVar m|]) in create_input ( mkNamedProd n (mkFullInd ind (2*nparrec)) ( mkNamedProd m (mkFullInd ind (2*nparrec+1)) ( mkApp(sumbool(),[|eqnm;mkApp (Coqlib.build_coq_not(),[|eqnm|])|]) ) ) ) let compute_dec_tact ind lnamesparrec nparrec = let list_id = list_id lnamesparrec in let eqI = eqI ind lnamesparrec in let avoid = ref [] in let gsig = top_goal_of_pftreestate (Pfedit.get_pftreestate()) in let eqtrue x = mkApp(eq,[|bb;x;tt|]) in let eqfalse x = mkApp(eq,[|bb;x;ff|]) in let first_intros = ( List.map (fun (s,_,_,_) -> s ) list_id ) @ ( List.map (fun (_,seq,_,_) -> seq) list_id ) @ ( List.map (fun (_,_,sbl,_) -> sbl) list_id ) @ ( List.map (fun (_,_,_,slb) -> slb) list_id ) in let fresh_first_intros = List.map ( fun s -> let fresh = fresh_id (!avoid) s gsig in avoid := fresh::(!avoid); fresh ) first_intros in let freshn = fresh_id (!avoid) (id_of_string "n") gsig in let freshm = avoid := freshn::(!avoid); fresh_id (!avoid) (id_of_string "m") gsig in let freshH = avoid := freshm::(!avoid); fresh_id (!avoid) (id_of_string "H") gsig in let eqbnm = mkApp(eqI,[|mkVar freshn;mkVar freshm|]) in avoid := freshH::(!avoid); Pfedit.by ( tclTHENSEQ [ intros_using fresh_first_intros; intros_using [freshn;freshm]; assert_as true (Genarg.IntroIdentifier freshH) ( mkApp(sumbool(),[|eqtrue eqbnm; eqfalse eqbnm|]) ) ]); (*we do this so we don't have to prove the same goal twice *) Pfedit.by ( tclTHEN (new_destruct false [Tacexpr.ElimOnConstr (eqbnm,Rawterm.NoBindings)] None Genarg.IntroAnonymous) Auto.default_auto ); Pfedit.by ( let freshH2 = fresh_id (!avoid) (id_of_string "H") gsig in avoid := freshH2::(!avoid); new_destruct false [Tacexpr.ElimOnConstr ((mkVar freshH),Rawterm.NoBindings)] None (Genarg.IntroOrAndPattern [ [Genarg.IntroAnonymous]; [Genarg.IntroIdentifier freshH2]]) ); let arfresh = Array.of_list fresh_first_intros in let xargs = Array.sub arfresh 0 (2*nparrec) in let blI = try find_bl_proof ind with Not_found -> error ( "Error during the decidability part, boolean to leibniz"^ " equality is required.") in let lbI = try find_lb_proof ind with Not_found -> error ( "Error during the decidability part, leibniz to boolean"^ " equality is required.") in (* left *) Pfedit.by ( tclTHENSEQ [ simplest_left; apply (mkApp(blI,Array.map(fun x->mkVar x) xargs)); Auto.default_auto ]); (*right *) let freshH3 = fresh_id (!avoid) (id_of_string "H") gsig in avoid := freshH3::(!avoid); Pfedit.by (tclTHENSEQ [ simplest_right ; unfold_constr (Lazy.force Coqlib.coq_not_ref); intro; Equality.subst_all; assert_as true (Genarg.IntroIdentifier freshH3) (mkApp(eq,[|bb;mkApp(eqI,[|mkVar freshm;mkVar freshm|]);tt|])) ]); Pfedit.by (tclTHENSEQ [apply (mkApp(lbI,Array.map (fun x->mkVar x) xargs)); Auto.default_auto ]); Pfedit.by (Equality.general_rewrite_bindings_in true (List.hd !avoid) ((mkVar (List.hd (List.tl !avoid))), Rawterm.NoBindings ) true); Pfedit.by (Equality.discr_tac None)