(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* (x:Z)`x > 0) -> (P x) /\ || || (Q O) (n:nat)(Q n)->(Q (S n)) <=== (P 0) (x:Z) (P x) -> (P (Zs x)) <=== (inject_nat (S n))=(Zs (inject_nat n)) <=== inject_nat_complete >> Then the diagram will be closed and the theorem proved. *) Lemma inject_nat_complete : (x:Z)`0 <= x` -> (EX n:nat | x=(inject_nat n)). Intro x; NewDestruct x; Intros; [ Exists O; Auto with arith | Specialize (ZL4 p); Intros Hp; Elim Hp; Intros; Exists (S x); Intros; Simpl; Specialize (bij1 x); Intro Hx0; Rewrite <- H0 in Hx0; Apply f_equal with f:=POS; Apply convert_intro; Auto with arith | Absurd `0 <= (NEG p)`; [ Unfold Zle; Simpl; Do 2 (Unfold not); Auto with arith | Assumption] ]. Qed. Lemma ZL4_inf: (y:positive) { h:nat | (convert y)=(S h) }. Intro y; NewInduction y as [p H|p H1|]; [ Elim H; Intros x H1; Exists (plus (S x) (S x)); Unfold convert ;Simpl; Rewrite ZL0; Rewrite ZL2; Unfold convert in H1; Rewrite H1; Auto with arith | Elim H1;Intros x H2; Exists (plus x (S x)); Unfold convert; Simpl; Rewrite ZL0; Rewrite ZL2;Unfold convert in H2; Rewrite H2; Auto with arith | Exists O ;Auto with arith]. Qed. Lemma inject_nat_complete_inf : (x:Z)`0 <= x` -> { n:nat | (x=(inject_nat n)) }. Intro x; NewDestruct x; Intros; [ Exists O; Auto with arith | Specialize (ZL4_inf p); Intros Hp; Elim Hp; Intros x0 H0; Exists (S x0); Intros; Simpl; Specialize (bij1 x0); Intro Hx0; Rewrite <- H0 in Hx0; Apply f_equal with f:=POS; Apply convert_intro; Auto with arith | Absurd `0 <= (NEG p)`; [ Unfold Zle; Simpl; Do 2 (Unfold not); Auto with arith | Assumption] ]. Qed. Lemma inject_nat_prop : (P:Z->Prop)((n:nat)(P (inject_nat n))) -> (x:Z) `0 <= x` -> (P x). Intros P H x H0. Specialize (inject_nat_complete x H0). Intros Hn; Elim Hn; Intros. Rewrite -> H1; Apply H. Qed. Lemma inject_nat_set : (P:Z->Set)((n:nat)(P (inject_nat n))) -> (x:Z) `0 <= x` -> (P x). Intros P H x H0. Specialize (inject_nat_complete_inf x H0). Intros Hn; Elim Hn; Intros. Rewrite -> p; Apply H. Qed. Lemma natlike_ind : (P:Z->Prop) (P `0`) -> ((x:Z)(`0 <= x` -> (P x) -> (P (Zs x)))) -> (x:Z) `0 <= x` -> (P x). Intros P H H0 x H1; Apply inject_nat_prop; [ Induction n; [ Simpl; Assumption | Intros; Rewrite -> (inj_S n0); Exact (H0 (inject_nat n0) (ZERO_le_inj n0) H2) ] | Assumption]. Qed. Lemma natlike_rec : (P:Z->Set) (P `0`) -> ((x:Z)(`0 <= x` -> (P x) -> (P (Zs x)))) -> (x:Z) `0 <= x` -> (P x). Intros P H H0 x H1; Apply inject_nat_set; [ Induction n; [ Simpl; Assumption | Intros; Rewrite -> (inj_S n0); Exact (H0 (inject_nat n0) (ZERO_le_inj n0) H2) ] | Assumption]. Qed. Section Efficient_Rec. (** [natlike_rec2] is the same as [natlike_rec], but with a different proof, designed to give a better extracted term. *) Local R := [a,b:Z]`0<=a`/\`a (convert p) | ZERO => O | (NEG _) => O end. Apply well_founded_lt_compat with f. Unfold R f; Clear f R. Intros x y; Case x; Intros; Elim H; Clear H. Case y; Intros; Apply compare_convert_O Orelse Inversion H0. Case y; Intros; Apply compare_convert_INFERIEUR Orelse Inversion H0; Auto. Intros; Elim H; Auto. Qed. Lemma natlike_rec2 : (P:Z->Type)(P `0`) -> ((z:Z)`0<=z` -> (P z) -> (P (Zs z))) -> (z:Z)`0<=z` -> (P z). Proof. Intros P Ho Hrec z; Pattern z; Apply (well_founded_induction_type Z R R_wf). Intro x; Case x. Trivial. Intros. Assert `0<=(Zpred (POS p))`. Apply Zlt_ZERO_pred_le_ZERO; Unfold Zlt; Simpl; Trivial. Rewrite Zs_pred. Apply Hrec. Auto. Apply X; Auto; Unfold R; Intuition; Apply Zlt_pred_n_n. Intros; Elim H; Simpl; Trivial. Qed. (** A variant of the previous using [Zpred] instead of [Zs]. *) Lemma natlike_rec3 : (P:Z->Type)(P `0`) -> ((z:Z)`0 (P (Zpred z)) -> (P z)) -> (z:Z)`0<=z` -> (P z). Proof. Intros P Ho Hrec z; Pattern z; Apply (well_founded_induction_type Z R R_wf). Intro x; Case x. Trivial. Intros; Apply Hrec. Unfold Zlt; Trivial. Assert `0<=(Zpred (POS p))`. Apply Zlt_ZERO_pred_le_ZERO; Unfold Zlt; Simpl; Trivial. Apply X; Auto; Unfold R; Intuition; Apply Zlt_pred_n_n. Intros; Elim H; Simpl; Trivial. Qed. (** A more general induction principal using [Zlt]. *) Lemma Z_lt_rec : (P:Z->Type) ((x:Z)((y:Z)`0 <= y < x`->(P y))->(P x)) -> (x:Z)`0 <= x`->(P x). Proof. Intros P Hrec z; Pattern z; Apply (well_founded_induction_type Z R R_wf). Intro x; Case x; Intros. Apply Hrec; Intros. Assert H2: `0<0`. Apply Zle_lt_trans with y; Intuition. Inversion H2. Firstorder. Unfold Zle Zcompare in H; Elim H; Auto. Defined. Lemma Z_lt_induction : (P:Z->Prop) ((x:Z)((y:Z)`0 <= y < x`->(P y))->(P x)) -> (x:Z)`0 <= x`->(P x). Proof. Exact Z_lt_rec. Qed. End Efficient_Rec.