(**************************************************************************) (* *) (* Binary Integers *) (* *) (* Pierre Crégut (CNET, Lannion, France) *) (* *) (**************************************************************************) (* $Id$ *) Require Arith. Require Export fast_integer. Meta Definition ElimCompare com1 com2:= Elim (Dcompare (Zcompare com1 com2)); [ Idtac | Intro hidden_auxiliary; Elim hidden_auxiliary; Clear hidden_auxiliary ]. Definition Zlt := [x,y:Z](Zcompare x y) = INFERIEUR. Definition Zgt := [x,y:Z](Zcompare x y) = SUPERIEUR. Definition Zle := [x,y:Z]~(Zcompare x y) = SUPERIEUR. Definition Zge := [x,y:Z]~(Zcompare x y) = INFERIEUR. Definition absolu := [x:Z] Cases x of ZERO => O | (POS p) => (convert p) | (NEG p) => (convert p) end. Definition Zabs := [z:Z] Cases z of ZERO => ZERO | (POS p) => (POS p) | (NEG p) => (POS p) end. Lemma Zabs_eq : (x:Z) (Zle ZERO x) -> (Zabs x)=x. Destruct x; Auto with arith. Compute; Intros; Absurd SUPERIEUR=SUPERIEUR; Trivial with arith. Save. Definition inject_nat := [x:nat]Cases x of O => ZERO | (S y) => (POS (anti_convert y)) end. Definition Zs := [x:Z](Zplus x (POS xH)). Definition Zpred := [x:Z](Zplus x (NEG xH)). Theorem Zgt_Sn_n : (n:Z)(Zgt (Zs n) n). Intros n; Unfold Zgt Zs; Pattern 2 n; Rewrite <- (Zero_right n); Rewrite Zcompare_Zplus_compatible;Auto with arith. Save. Theorem Zle_gt_trans : (n,m,p:Z)(Zle m n)->(Zgt m p)->(Zgt n p). Unfold Zle Zgt; Intros n m p H1 H2; (ElimCompare 'm 'n); [ Intro E; Elim (Zcompare_EGAL m n); Intros H3 H4;Rewrite <- (H3 E); Assumption | Intro H3; Apply Zcompare_trans_SUPERIEUR with y:=m;[ Elim (Zcompare_ANTISYM n m); Intros H4 H5;Apply H5; Assumption | Assumption ] | Intro H3; Absurd (Zcompare m n)=SUPERIEUR;Assumption ]. Save. Theorem Zgt_le_trans : (n,m,p:Z)(Zgt n m)->(Zle p m)->(Zgt n p). Unfold Zle Zgt ;Intros n m p H1 H2; (ElimCompare 'p 'm); [ Intros E;Elim (Zcompare_EGAL p m);Intros H3 H4; Rewrite (H3 E); Assumption | Intro H3; Apply Zcompare_trans_SUPERIEUR with y:=m; [ Assumption | Elim (Zcompare_ANTISYM m p); Auto with arith ] | Intro H3; Absurd (Zcompare p m)=SUPERIEUR;Assumption ]. Save. Theorem Zle_S_gt : (n,m:Z) (Zle (Zs n) m) -> (Zgt m n). Intros n m H;Apply Zle_gt_trans with m:=(Zs n);[ Assumption | Apply Zgt_Sn_n ]. Save. Theorem Zcompare_n_S : (n,m:Z)(Zcompare (Zs n) (Zs m)) = (Zcompare n m). Intros n m;Unfold Zs ;Do 2 Rewrite -> [t:Z](Zplus_sym t (POS xH)); Rewrite -> Zcompare_Zplus_compatible;Auto with arith. Save. Theorem Zgt_n_S : (n,m:Z)(Zgt m n) -> (Zgt (Zs m) (Zs n)). Unfold Zgt; Intros n m H; Rewrite Zcompare_n_S; Auto with arith. Save. Lemma Zle_not_gt : (n,m:Z)(Zle n m) -> ~(Zgt n m). Unfold Zle Zgt; Auto with arith. Save. Lemma Zgt_antirefl : (n:Z)~(Zgt n n). Unfold Zgt ;Intros n; Elim (Zcompare_EGAL n n); Intros H1 H2; Rewrite H2; [ Discriminate | Trivial with arith ]. Save. Lemma Zgt_not_sym : (n,m:Z)(Zgt n m) -> ~(Zgt m n). Unfold Zgt ;Intros n m H; Elim (Zcompare_ANTISYM n m); Intros H1 H2; Rewrite -> H1; [ Discriminate | Assumption ]. Save. Lemma Zgt_not_le : (n,m:Z)(Zgt n m) -> ~(Zle n m). Unfold Zgt Zle not; Auto with arith. Save. Lemma Zgt_trans : (n,m,p:Z)(Zgt n m)->(Zgt m p)->(Zgt n p). Unfold Zgt; Exact Zcompare_trans_SUPERIEUR. Save. Lemma Zle_gt_S : (n,p:Z)(Zle n p)->(Zgt (Zs p) n). Unfold Zle Zgt ;Intros n p H; (ElimCompare 'n 'p); [ Intros H1;Elim (Zcompare_EGAL n p);Intros H2 H3; Rewrite <- H2; [ Exact (Zgt_Sn_n n) | Assumption ] | Intros H1;Apply Zcompare_trans_SUPERIEUR with y:=p; [ Exact (Zgt_Sn_n p) | Elim (Zcompare_ANTISYM p n); Auto with arith ] | Intros H1;Absurd (Zcompare n p)=SUPERIEUR;Assumption ]. Save. Lemma Zgt_pred : (n,p:Z)(Zgt p (Zs n))->(Zgt (Zpred p) n). Unfold Zgt Zs Zpred ;Intros n p H; Rewrite <- [x,y:Z](Zcompare_Zplus_compatible x y (POS xH)); Rewrite (Zplus_sym p); Rewrite Zplus_assoc; Rewrite [x:Z](Zplus_sym x n); Simpl; Assumption. Save. Lemma Zsimpl_gt_plus_l : (n,m,p:Z)(Zgt (Zplus p n) (Zplus p m))->(Zgt n m). Unfold Zgt; Intros n m p H; Rewrite <- (Zcompare_Zplus_compatible n m p); Assumption. Save. Lemma Zgt_reg_l : (n,m,p:Z)(Zgt n m)->(Zgt (Zplus p n) (Zplus p m)). Unfold Zgt; Intros n m p H; Rewrite (Zcompare_Zplus_compatible n m p); Assumption. Save. Theorem Zcompare_et_un: (x,y:Z) (Zcompare x y)=SUPERIEUR <-> ~(Zcompare x (Zplus y (POS xH)))=INFERIEUR. Intros x y; Split; [ Intro H; (ElimCompare 'x '(Zplus y (POS xH)));[ Intro H1; Rewrite H1; Discriminate | Intros H1; Elim SUPERIEUR_POS with 1:=H; Intros h H2; Absurd (gt (convert h) O) /\ (lt (convert h) (S O)); [ Unfold not ;Intros H3;Elim H3;Intros H4 H5; Absurd (gt (convert h) O); [ Unfold gt ;Apply le_not_lt; Apply le_S_n; Exact H5 | Assumption] | Split; [ Elim (ZL4 h); Intros i H3;Rewrite H3; Apply gt_Sn_O | Change (lt (convert h) (convert xH)); Apply compare_convert_INFERIEUR; Change (Zcompare (POS h) (POS xH))=INFERIEUR; Rewrite <- H2; Rewrite <- [m,n:Z](Zcompare_Zplus_compatible m n y); Rewrite (Zplus_sym x);Rewrite Zplus_assoc; Rewrite Zplus_inverse_r; Simpl; Exact H1 ]] | Intros H1;Rewrite -> H1;Discriminate ] | Intros H; (ElimCompare 'x '(Zplus y (POS xH))); [ Intros H1;Elim (Zcompare_EGAL x (Zplus y (POS xH))); Intros H2 H3; Rewrite (H2 H1); Exact (Zgt_Sn_n y) | Intros H1;Absurd (Zcompare x (Zplus y (POS xH)))=INFERIEUR;Assumption | Intros H1; Apply Zcompare_trans_SUPERIEUR with y:=(Zs y); [ Exact H1 | Exact (Zgt_Sn_n y) ]]]. Save. Lemma Zgt_S_n : (n,p:Z)(Zgt (Zs p) (Zs n))->(Zgt p n). Unfold Zs Zgt;Intros n p;Do 2 Rewrite -> [m:Z](Zplus_sym m (POS xH)); Rewrite -> (Zcompare_Zplus_compatible p n (POS xH));Trivial with arith. Save. Lemma Zle_S_n : (n,m:Z) (Zle (Zs m) (Zs n)) -> (Zle m n). Unfold Zle not ;Intros m n H1 H2;Apply H1; Unfold Zs ;Do 2 Rewrite <- (Zplus_sym (POS xH)); Rewrite -> (Zcompare_Zplus_compatible n m (POS xH));Assumption. Save. Lemma Zgt_le_S : (n,p:Z)(Zgt p n)->(Zle (Zs n) p). Unfold Zgt Zle; Intros n p H; Elim (Zcompare_et_un p n); Intros H1 H2; Unfold not ;Intros H3; Unfold not in H1; Apply H1; [ Assumption | Elim (Zcompare_ANTISYM (Zplus n (POS xH)) p);Intros H4 H5;Apply H4;Exact H3]. Save. Lemma Zgt_S_le : (n,p:Z)(Zgt (Zs p) n)->(Zle n p). Intros n p H;Apply Zle_S_n; Apply Zgt_le_S; Assumption. Save. Theorem Zgt_S : (n,m:Z)(Zgt (Zs n) m)->((Zgt n m)\/(m=n)). Intros n m H; Unfold Zgt; (ElimCompare 'n 'm); [ Elim (Zcompare_EGAL n m); Intros H1 H2 H3;Rewrite -> H1;Auto with arith | Intros H1;Absurd (Zcompare m n)=SUPERIEUR; [ Exact (Zgt_S_le m n H) | Elim (Zcompare_ANTISYM m n); Auto with arith ] | Auto with arith ]. Save. Theorem Zgt_trans_S : (n,m,p:Z)(Zgt (Zs n) m)->(Zgt m p)->(Zgt n p). Intros n m p H1 H2;Apply Zle_gt_trans with m:=m; [ Apply Zgt_S_le; Assumption | Assumption ]. Save. Theorem Zeq_S : (n,m:Z) n=m -> (Zs n)=(Zs m). Intros n m H; Rewrite H; Auto with arith. Save. Theorem Zpred_Sn : (m:Z) m=(Zpred (Zs m)). Intros m; Unfold Zpred Zs; Rewrite <- Zplus_assoc; Simpl; Rewrite Zplus_sym; Auto with arith. Save. Theorem Zeq_add_S : (n,m:Z) (Zs n)=(Zs m) -> n=m. Intros n m H. Change (Zplus (Zplus (NEG xH) (POS xH)) n)= (Zplus (Zplus (NEG xH) (POS xH)) m); Do 2 Rewrite <- Zplus_assoc; Do 2 Rewrite (Zplus_sym (POS xH)); Unfold Zs in H;Rewrite H; Trivial with arith. Save. Theorem Znot_eq_S : (n,m:Z) ~(n=m) -> ~((Zs n)=(Zs m)). Unfold not ;Intros n m H1 H2;Apply H1;Apply Zeq_add_S; Assumption. Save. Lemma Zsimpl_plus_l : (n,m,p:Z)(Zplus n m)=(Zplus n p)->m=p. Intros n m p H; Cut (Zplus (Zopp n) (Zplus n m))=(Zplus (Zopp n) (Zplus n p));[ Do 2 Rewrite -> Zplus_assoc; Rewrite -> (Zplus_sym (Zopp n) n); Rewrite -> Zplus_inverse_r;Simpl; Trivial with arith | Rewrite -> H; Trivial with arith ]. Save. Theorem Zn_Sn : (n:Z) ~(n=(Zs n)). Intros n;Cut ~ZERO=(POS xH);[ Unfold not ;Intros H1 H2;Apply H1;Apply (Zsimpl_plus_l n);Rewrite Zero_right; Exact H2 | Discriminate ]. Save. Lemma Zplus_n_O : (n:Z) n=(Zplus n ZERO). Intro; Rewrite Zero_right; Trivial with arith. Save. Lemma Zplus_unit_left : (n,m:Z) (Zplus n ZERO)=m -> n=m. Intro; Rewrite Zero_right; Trivial with arith. Save. Lemma Zplus_unit_right : (n,m:Z) n=(Zplus m ZERO) -> n=m. Intros n m; Rewrite (Zero_right m); Trivial with arith. Save. Lemma Zplus_n_Sm : (n,m:Z) (Zs (Zplus n m))=(Zplus n (Zs m)). Intros n m; Unfold Zs; Rewrite Zplus_assoc; Trivial with arith. Save. Lemma Zmult_n_O : (n:Z) ZERO=(Zmult n ZERO). Intro;Rewrite Zmult_sym;Simpl; Trivial with arith. Save. Lemma Zmult_n_Sm : (n,m:Z) (Zplus (Zmult n m) n)=(Zmult n (Zs m)). Intros n m;Unfold Zs; Rewrite Zmult_plus_distr_r; Rewrite (Zmult_sym n (POS xH));Rewrite Zmult_one; Trivial with arith. Save. Theorem Zle_n : (n:Z) (Zle n n). Intros n;Elim (Zcompare_EGAL n n);Unfold Zle ;Intros H1 H2;Rewrite H2; [ Discriminate | Trivial with arith ]. Save. Theorem Zle_refl : (n,m:Z) n=m -> (Zle n m). Intros; Rewrite H; Apply Zle_n. Save. Theorem Zle_trans : (n,m,p:Z)(Zle n m)->(Zle m p)->(Zle n p). Intros n m p;Unfold 1 3 Zle; Unfold not; Intros H1 H2 H3;Apply H1; Exact (Zgt_le_trans n p m H3 H2). Save. Theorem Zle_n_Sn : (n:Z)(Zle n (Zs n)). Intros n; Apply Zgt_S_le;Apply Zgt_trans with m:=(Zs n) ;Apply Zgt_Sn_n. Save. Lemma Zle_n_S : (n,m:Z) (Zle m n) -> (Zle (Zs m) (Zs n)). Unfold Zle not ;Intros m n H1 H2; Apply H1; Rewrite <- (Zcompare_Zplus_compatible n m (POS xH)); Do 2 Rewrite (Zplus_sym (POS xH)); Exact H2. Save. Hints Resolve Zle_n Zle_n_Sn Zle_trans Zle_n_S : zarith. Hints Immediate Zle_refl : zarith. Lemma Zs_pred : (n:Z) n=(Zs (Zpred n)). Intros n; Unfold Zs Zpred ;Rewrite <- Zplus_assoc; Simpl; Rewrite Zero_right; Trivial with arith. Save. Hints Immediate Zs_pred : zarith. Theorem Zle_pred_n : (n:Z)(Zle (Zpred n) n). Intros n;Pattern 2 n ;Rewrite Zs_pred; Apply Zle_n_Sn. Save. Theorem Zle_trans_S : (n,m:Z)(Zle (Zs n) m)->(Zle n m). Intros n m H;Apply Zle_trans with m:=(Zs n); [ Apply Zle_n_Sn | Assumption ]. Save. Theorem Zle_Sn_n : (n:Z)~(Zle (Zs n) n). Intros n; Apply Zgt_not_le; Apply Zgt_Sn_n. Save. Theorem Zle_antisym : (n,m:Z)(Zle n m)->(Zle m n)->(n=m). Unfold Zle ;Intros n m H1 H2; (ElimCompare 'n 'm); [ Elim (Zcompare_EGAL n m);Auto with arith | Intros H3;Absurd (Zcompare m n)=SUPERIEUR; [ Assumption | Elim (Zcompare_ANTISYM m n);Auto with arith ] | Intros H3;Absurd (Zcompare n m)=SUPERIEUR;Assumption ]. Save. Theorem Zgt_lt : (m,n:Z) (Zgt m n) -> (Zlt n m). Unfold Zgt Zlt ;Intros m n H; Elim (Zcompare_ANTISYM m n); Auto with arith. Save. Theorem Zlt_gt : (m,n:Z) (Zlt m n) -> (Zgt n m). Unfold Zgt Zlt ;Intros m n H; Elim (Zcompare_ANTISYM n m); Auto with arith. Save. Theorem Zge_le : (m,n:Z) (Zge m n) -> (Zle n m). Intros m n; Change ~(Zlt m n)-> ~(Zgt n m); Unfold not; Intros H1 H2; Apply H1; Apply Zgt_lt; Assumption. Save. Theorem Zle_ge : (m,n:Z) (Zle m n) -> (Zge n m). Intros m n; Change ~(Zgt m n)-> ~(Zlt n m); Unfold not; Intros H1 H2; Apply H1; Apply Zlt_gt; Assumption. Save. Theorem Zlt_n_Sn : (n:Z)(Zlt n (Zs n)). Intro n; Apply Zgt_lt; Apply Zgt_Sn_n. Save. Theorem Zlt_S : (n,m:Z)(Zlt n m)->(Zlt n (Zs m)). Intros n m H;Apply Zgt_lt; Apply Zgt_trans with m:=m; [ Apply Zgt_Sn_n | Apply Zlt_gt; Assumption ]. Save. Theorem Zlt_n_S : (n,m:Z)(Zlt n m)->(Zlt (Zs n) (Zs m)). Intros n m H;Apply Zgt_lt;Apply Zgt_n_S;Apply Zlt_gt; Assumption. Save. Theorem Zlt_S_n : (n,m:Z)(Zlt (Zs n) (Zs m))->(Zlt n m). Intros n m H;Apply Zgt_lt;Apply Zgt_S_n;Apply Zlt_gt; Assumption. Save. Theorem Zlt_n_n : (n:Z)~(Zlt n n). Intros n;Elim (Zcompare_EGAL n n); Unfold Zlt ;Intros H1 H2; Rewrite H2; [ Discriminate | Trivial with arith ]. Save. Lemma Zlt_pred : (n,p:Z)(Zlt (Zs n) p)->(Zlt n (Zpred p)). Intros n p H;Apply Zlt_S_n; Rewrite <- Zs_pred; Assumption. Save. Lemma Zlt_pred_n_n : (n:Z)(Zlt (Zpred n) n). Intros n; Apply Zlt_S_n; Rewrite <- Zs_pred; Apply Zlt_n_Sn. Save. Theorem Zlt_le_S : (n,p:Z)(Zlt n p)->(Zle (Zs n) p). Intros n p H; Apply Zgt_le_S; Apply Zlt_gt; Assumption. Save. Theorem Zlt_n_Sm_le : (n,m:Z)(Zlt n (Zs m))->(Zle n m). Intros n m H; Apply Zgt_S_le; Apply Zlt_gt; Assumption. Save. Theorem Zle_lt_n_Sm : (n,m:Z)(Zle n m)->(Zlt n (Zs m)). Intros n m H; Apply Zgt_lt; Apply Zle_gt_S; Assumption. Save. Theorem Zlt_le_weak : (n,m:Z)(Zlt n m)->(Zle n m). Unfold Zlt Zle ;Intros n m H;Rewrite H;Discriminate. Save. Theorem Zlt_trans : (n,m,p:Z)(Zlt n m)->(Zlt m p)->(Zlt n p). Intros n m p H1 H2; Apply Zgt_lt; Apply Zgt_trans with m:= m; Apply Zlt_gt; Assumption. Save. Theorem Zlt_le_trans : (n,m,p:Z)(Zlt n m)->(Zle m p)->(Zlt n p). Intros n m p H1 H2;Apply Zgt_lt;Apply Zle_gt_trans with m:=m; [ Assumption | Apply Zlt_gt;Assumption ]. Save. Theorem Zle_lt_trans : (n,m,p:Z)(Zle n m)->(Zlt m p)->(Zlt n p). Intros n m p H1 H2;Apply Zgt_lt;Apply Zgt_le_trans with m:=m; [ Apply Zlt_gt;Assumption | Assumption ]. Save. Theorem Zle_lt_or_eq : (n,m:Z)(Zle n m)->((Zlt n m) \/ n=m). Unfold Zle Zlt ;Intros n m H; (ElimCompare 'n 'm); [ Elim (Zcompare_EGAL n m);Auto with arith | Auto with arith | Intros H';Absurd (Zcompare n m)=SUPERIEUR;Assumption ]. Save. Theorem Zle_or_lt : (n,m:Z)((Zle n m)\/(Zlt m n)). Unfold Zle Zlt ;Intros n m; (ElimCompare 'n 'm); [ Intros E;Rewrite -> E;Left;Discriminate | Intros E;Rewrite -> E;Left;Discriminate | Elim (Zcompare_ANTISYM n m); Auto with arith ]. Save. Theorem Zle_not_lt : (n,m:Z)(Zle n m) -> ~(Zlt m n). Unfold Zle Zlt; Unfold not ;Intros n m H1 H2;Apply H1; Elim (Zcompare_ANTISYM n m);Auto with arith. Save. Theorem Zlt_not_le : (n,m:Z)(Zlt n m) -> ~(Zle m n). Unfold Zlt Zle not ;Intros n m H1 H2; Apply H2; Elim (Zcompare_ANTISYM m n); Auto with arith. Save. Theorem Zlt_not_sym : (n,m:Z)(Zlt n m) -> ~(Zlt m n). Intros n m H;Apply Zle_not_lt; Apply Zlt_le_weak; Assumption. Save. Theorem Zle_le_S : (x,y:Z)(Zle x y)->(Zle x (Zs y)). Intros. Apply Zle_trans with y; Trivial with zarith. Save. Hints Resolve Zle_le_S : zarith. Definition Zmin := [n,m:Z] Cases (Zcompare n m) of EGAL => n | INFERIEUR => n | SUPERIEUR => m end. Lemma Zmin_SS : (n,m:Z)((Zs (Zmin n m))=(Zmin (Zs n) (Zs m))). Intros n m;Unfold Zmin; Rewrite (Zcompare_n_S n m); (ElimCompare 'n 'm);Intros E;Rewrite E;Auto with arith. Save. Lemma Zle_min_l : (n,m:Z)(Zle (Zmin n m) n). Intros n m;Unfold Zmin ; (ElimCompare 'n 'm);Intros E;Rewrite -> E; [ Apply Zle_n | Apply Zle_n | Apply Zlt_le_weak; Apply Zgt_lt;Exact E ]. Save. Lemma Zle_min_r : (n,m:Z)(Zle (Zmin n m) m). Intros n m;Unfold Zmin ; (ElimCompare 'n 'm);Intros E;Rewrite -> E;[ Unfold Zle ;Rewrite -> E;Discriminate | Unfold Zle ;Rewrite -> E;Discriminate | Apply Zle_n ]. Save. Lemma Zmin_case : (n,m:Z)(P:Z->Set)(P n)->(P m)->(P (Zmin n m)). Intros n m P H1 H2; Unfold Zmin; Case (Zcompare n m);Auto with arith. Save. Lemma Zmin_or : (n,m:Z)(Zmin n m)=n \/ (Zmin n m)=m. Unfold Zmin; Intros; Elim (Zcompare n m); Auto. Save. Lemma Zmin_n_n : (n:Z) (Zmin n n)=n. Unfold Zmin; Intros; Elim (Zcompare n n); Auto. Save. Lemma Zplus_assoc_l : (n,m,p:Z)((Zplus n (Zplus m p))=(Zplus (Zplus n m) p)). Exact Zplus_assoc. Save. Lemma Zplus_assoc_r : (n,m,p:Z)(Zplus (Zplus n m) p) =(Zplus n (Zplus m p)). Intros; Symmetry; Apply Zplus_assoc. Save. Lemma Zplus_permute : (n,m,p:Z) (Zplus n (Zplus m p))=(Zplus m (Zplus n p)). Intros n m p; Rewrite Zplus_sym;Rewrite <- Zplus_assoc; Rewrite (Zplus_sym p n); Trivial with arith. Save. Lemma Zsimpl_le_plus_l : (p,n,m:Z)(Zle (Zplus p n) (Zplus p m))->(Zle n m). Intros p n m; Unfold Zle not ;Intros H1 H2;Apply H1; Rewrite (Zcompare_Zplus_compatible n m p); Assumption. Save. Lemma Zle_reg_l : (n,m,p:Z)(Zle n m)->(Zle (Zplus p n) (Zplus p m)). Intros n m p; Unfold Zle not ;Intros H1 H2;Apply H1; Rewrite <- (Zcompare_Zplus_compatible n m p); Assumption. Save. Lemma Zle_reg_r : (a,b,c:Z) (Zle a b)->(Zle (Zplus a c) (Zplus b c)). Intros a b c;Do 2 Rewrite [n:Z](Zplus_sym n c); Exact (Zle_reg_l a b c). Save. Lemma Zle_plus_plus : (n,m,p,q:Z) (Zle n m)->(Zle p q)->(Zle (Zplus n p) (Zplus m q)). Intros n m p q; Intros H1 H2;Apply Zle_trans with m:=(Zplus n q); [ Apply Zle_reg_l;Assumption | Apply Zle_reg_r;Assumption ]. Save. Lemma Zplus_Snm_nSm : (n,m:Z)(Zplus (Zs n) m)=(Zplus n (Zs m)). Unfold Zs ;Intros n m; Rewrite <- Zplus_assoc; Rewrite (Zplus_sym (POS xH)); Trivial with arith. Save. Lemma Zsimpl_lt_plus_l : (n,m,p:Z)(Zlt (Zplus p n) (Zplus p m))->(Zlt n m). Unfold Zlt ;Intros n m p; Rewrite Zcompare_Zplus_compatible;Trivial with arith. Save. Lemma Zlt_reg_l : (n,m,p:Z)(Zlt n m)->(Zlt (Zplus p n) (Zplus p m)). Unfold Zlt ;Intros n m p; Rewrite Zcompare_Zplus_compatible;Trivial with arith. Save. Definition Zminus := [m,n:Z](Zplus m (Zopp n)). Lemma Zminus_plus_simpl : (n,m,p:Z)((Zminus n m)=(Zminus (Zplus p n) (Zplus p m))). Intros n m p;Unfold Zminus; Rewrite Zopp_Zplus; Rewrite Zplus_assoc; Rewrite (Zplus_sym p); Rewrite <- (Zplus_assoc n p); Rewrite Zplus_inverse_r; Rewrite Zero_right; Trivial with arith. Save. Lemma Zminus_n_O : (n:Z)(n=(Zminus n ZERO)). Intro; Unfold Zminus; Simpl;Rewrite Zero_right; Trivial with arith. Save. Lemma Zminus_n_n : (n:Z)(ZERO=(Zminus n n)). Intro; Unfold Zminus; Rewrite Zplus_inverse_r; Trivial with arith. Save. Lemma Zplus_minus : (n,m,p:Z)(n=(Zplus m p))->(p=(Zminus n m)). Intros n m p H;Unfold Zminus;Apply (Zsimpl_plus_l m); Rewrite (Zplus_sym m (Zplus n (Zopp m))); Rewrite <- Zplus_assoc; Rewrite Zplus_inverse_l; Rewrite Zero_right; Rewrite H; Trivial with arith. Save. Lemma Zminus_plus : (n,m:Z)(Zminus (Zplus n m) n)=m. Intros n m;Unfold Zminus ;Rewrite -> (Zplus_sym n m);Rewrite <- Zplus_assoc; Rewrite -> Zplus_inverse_r; Apply Zero_right. Save. Lemma Zle_plus_minus : (n,m:Z) (Zplus n (Zminus m n))=m. Unfold Zminus; Intros n m; Rewrite Zplus_permute; Rewrite Zplus_inverse_r; Apply Zero_right. Save. Lemma Zminus_Sn_m : (n,m:Z)((Zs (Zminus n m))=(Zminus (Zs n) m)). Intros n m;Unfold Zminus Zs; Rewrite (Zplus_sym n (Zopp m)); Rewrite <- Zplus_assoc;Apply Zplus_sym. Save. Lemma Zlt_minus : (n,m:Z)(Zlt ZERO m)->(Zlt (Zminus n m) n). Intros n m H; Apply Zsimpl_lt_plus_l with p:=m; Rewrite Zle_plus_minus; Pattern 1 n ;Rewrite <- (Zero_right n); Rewrite (Zplus_sym m n); Apply Zlt_reg_l; Assumption. Save. Lemma Zlt_O_minus_lt : (n,m:Z)(Zlt ZERO (Zminus n m))->(Zlt m n). Intros n m H; Apply Zsimpl_lt_plus_l with p:=(Zopp m); Rewrite Zplus_inverse_l; Rewrite Zplus_sym;Exact H. Save. Lemma Zmult_plus_distr_l : (n,m,p:Z)((Zmult (Zplus n m) p)=(Zplus (Zmult n p) (Zmult m p))). Intros n m p;Rewrite Zmult_sym;Rewrite Zmult_plus_distr_r; Do 2 Rewrite -> (Zmult_sym p); Trivial with arith. Save. Lemma Zmult_minus_distr : (n,m,p:Z)((Zmult (Zminus n m) p)=(Zminus (Zmult n p) (Zmult m p))). Intros n m p;Unfold Zminus; Rewrite Zmult_plus_distr_l; Rewrite Zopp_Zmult; Trivial with arith. Save. Lemma Zmult_assoc_r : (n,m,p:Z)((Zmult (Zmult n m) p) = (Zmult n (Zmult m p))). Intros n m p; Rewrite Zmult_assoc; Trivial with arith. Save. Lemma Zmult_assoc_l : (n,m,p:Z)(Zmult n (Zmult m p)) = (Zmult (Zmult n m) p). Intros n m p; Rewrite Zmult_assoc; Trivial with arith. Save. Theorem Zmult_permute : (n,m,p:Z)(Zmult n (Zmult m p)) = (Zmult m (Zmult n p)). Intros; Rewrite -> (Zmult_assoc m n p); Rewrite -> (Zmult_sym m n). Apply Zmult_assoc. Save. Lemma Zmult_1_n : (n:Z)(Zmult (POS xH) n)=n. Exact Zmult_one. Save. Lemma Zmult_n_1 : (n:Z)(Zmult n (POS xH))=n. Intro; Rewrite Zmult_sym; Apply Zmult_one. Save. Lemma Zmult_Sm_n : (n,m:Z) (Zplus (Zmult n m) m)=(Zmult (Zs n) m). Intros n m; Unfold Zs; Rewrite Zmult_plus_distr_l; Rewrite Zmult_1_n; Trivial with arith. Save. (*** Just for compatibility with previous versions ***) (*** Use Zmult_plus_distr_r and Zmult_plus_distr_l rather than their synomymous ***) Definition Zmult_Zplus_distr := Zmult_plus_distr_r. Definition Zmult_plus_distr := Zmult_plus_distr_l.