(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* ZL12; Unfold Zs; Simpl; Trivial with arith. Qed. Theorem inj_S : (y:nat) (inject_nat (S y)) = (Zs (inject_nat y)). Induction y; [ Unfold Zs ; Simpl; Trivial with arith | Intros n; Intros H; Change (POS (add_un (anti_convert n)))=(Zs (inject_nat (S n))); Rewrite add_un_Zs; Trivial with arith]. Qed. Theorem Zplus_S_n: (x,y:Z) (Zplus (Zs x) y) = (Zs (Zplus x y)). Intros x y; Unfold Zs; Rewrite (Zplus_sym (Zplus x y)); Rewrite Zplus_assoc; Rewrite (Zplus_sym (POS xH)); Trivial with arith. Qed. Theorem inj_plus : (x,y:nat) (inject_nat (plus x y)) = (Zplus (inject_nat x) (inject_nat y)). Induction x; Induction y; [ Simpl; Trivial with arith | Simpl; Trivial with arith | Simpl; Rewrite <- plus_n_O; Trivial with arith | Intros m H1; Change (inject_nat (S (plus n (S m))))= (Zplus (inject_nat (S n)) (inject_nat (S m))); Rewrite inj_S; Rewrite H; Do 2 Rewrite inj_S; Rewrite Zplus_S_n; Trivial with arith]. Qed. Theorem inj_mult : (x,y:nat) (inject_nat (mult x y)) = (Zmult (inject_nat x) (inject_nat y)). Induction x; [ Simpl; Trivial with arith | Intros n H y; Rewrite -> inj_S; Rewrite <- Zmult_Sm_n; Rewrite <- H;Rewrite <- inj_plus; Simpl; Rewrite plus_sym; Trivial with arith]. Qed. Theorem inj_neq: (x,y:nat) (neq x y) -> (Zne (inject_nat x) (inject_nat y)). Unfold neq Zne not ; Intros x y H1 H2; Apply H1; Generalize H2; Case x; Case y; Intros; [ Auto with arith | Discriminate H0 | Discriminate H0 | Simpl in H0; Injection H0; Do 2 Rewrite <- bij1; Intros E; Rewrite E; Auto with arith]. Qed. Theorem inj_le: (x,y:nat) (le x y) -> (Zle (inject_nat x) (inject_nat y)). Intros x y; Intros H; Elim H; [ Unfold Zle ; Elim (Zcompare_EGAL (inject_nat x) (inject_nat x)); Intros H1 H2; Rewrite H2; [ Discriminate | Trivial with arith] | Intros m H1 H2; Apply Zle_trans with (inject_nat m); [Assumption | Rewrite inj_S; Apply Zle_n_Sn]]. Qed. Theorem inj_lt: (x,y:nat) (lt x y) -> (Zlt (inject_nat x) (inject_nat y)). Intros x y H; Apply Zgt_lt; Apply Zle_S_gt; Rewrite <- inj_S; Apply inj_le; Exact H. Qed. Theorem inj_gt: (x,y:nat) (gt x y) -> (Zgt (inject_nat x) (inject_nat y)). Intros x y H; Apply Zlt_gt; Apply inj_lt; Exact H. Qed. Theorem inj_ge: (x,y:nat) (ge x y) -> (Zge (inject_nat x) (inject_nat y)). Intros x y H; Apply Zle_ge; Apply inj_le; Apply H. Qed. Theorem inj_eq: (x,y:nat) x=y -> (inject_nat x) = (inject_nat y). Intros x y H; Rewrite H; Trivial with arith. Qed. Theorem intro_Z : (x:nat) (EX y:Z | (inject_nat x)=y /\ (Zle ZERO (Zplus (Zmult y (POS xH)) ZERO))). Intros x; Exists (inject_nat x); Split; [ Trivial with arith | Rewrite Zmult_sym; Rewrite Zmult_one; Rewrite Zero_right; Unfold Zle ; Elim x; Intros;Simpl; Discriminate ]. Qed. Theorem inj_minus1 : (x,y:nat) (le y x) -> (inject_nat (minus x y)) = (Zminus (inject_nat x) (inject_nat y)). Intros x y H; Apply (Zsimpl_plus_l (inject_nat y)); Unfold Zminus ; Rewrite Zplus_permute; Rewrite Zplus_inverse_r; Rewrite <- inj_plus; Rewrite <- (le_plus_minus y x H);Rewrite Zero_right; Trivial with arith. Qed. Theorem inj_minus2: (x,y:nat) (gt y x) -> (inject_nat (minus x y)) = ZERO. Intros x y H; Rewrite inj_minus_aux; [ Trivial with arith | Apply gt_not_le; Assumption]. Qed. Theorem dec_eq: (x,y:Z) (decidable (x=y)). Intros x y; Unfold decidable ; Elim (Zcompare_EGAL x y); Intros H1 H2; Elim (Dcompare (Zcompare x y)); [ Tauto | Intros H3; Right; Unfold not ; Intros H4; Elim H3; Rewrite (H2 H4); Intros H5; Discriminate H5]. Qed. Theorem dec_Zne: (x,y:Z) (decidable (Zne x y)). Intros x y; Unfold decidable Zne ; Elim (Zcompare_EGAL x y). Intros H1 H2; Elim (Dcompare (Zcompare x y)); [ Right; Rewrite H1; Auto | Left; Unfold not; Intro; Absurd (Zcompare x y)=EGAL; [ Elim H; Intros HR; Rewrite HR; Discriminate | Auto]]. Qed. Theorem dec_Zle: (x,y:Z) (decidable (Zle x y)). Intros x y; Unfold decidable Zle ; Elim (Zcompare x y); [ Left; Discriminate | Left; Discriminate | Right; Unfold not ; Intros H; Apply H; Trivial with arith]. Qed. Theorem dec_Zgt: (x,y:Z) (decidable (Zgt x y)). Intros x y; Unfold decidable Zgt ; Elim (Zcompare x y); [ Right; Discriminate | Right; Discriminate | Auto with arith]. Qed. Theorem dec_Zge: (x,y:Z) (decidable (Zge x y)). Intros x y; Unfold decidable Zge ; Elim (Zcompare x y); [ Left; Discriminate | Right; Unfold not ; Intros H; Apply H; Trivial with arith | Left; Discriminate]. Qed. Theorem dec_Zlt: (x,y:Z) (decidable (Zlt x y)). Intros x y; Unfold decidable Zlt ; Elim (Zcompare x y); [ Right; Discriminate | Auto with arith | Right; Discriminate]. Qed. Theorem dec_eq_nat:(x,y:nat)(decidable (x=y)). Intros x y; Unfold decidable; Elim (eq_nat_dec x y); Auto with arith. Qed. Theorem not_Zge : (x,y:Z) ~(Zge x y) -> (Zlt x y). Unfold Zge Zlt ; Intros x y H; Apply dec_not_not; [ Exact (dec_Zlt x y) | Assumption]. Qed. Theorem not_Zlt : (x,y:Z) ~(Zlt x y) -> (Zge x y). Unfold Zlt Zge; Auto with arith. Qed. Theorem not_Zle : (x,y:Z) ~(Zle x y) -> (Zgt x y). Unfold Zle Zgt ; Intros x y H; Apply dec_not_not; [ Exact (dec_Zgt x y) | Assumption]. Qed. Theorem not_Zgt : (x,y:Z) ~(Zgt x y) -> (Zle x y). Unfold Zgt Zle; Auto with arith. Qed. Theorem not_Zeq : (x,y:Z) ~ x=y -> (Zlt x y) \/ (Zlt y x). Intros x y; Elim (Dcompare (Zcompare x y)); [ Intros H1 H2; Absurd x=y; [ Assumption | Elim (Zcompare_EGAL x y); Auto with arith] | Unfold Zlt ; Intros H; Elim H; Intros H1; [Auto with arith | Right; Elim (Zcompare_ANTISYM x y); Auto with arith]]. Qed. Lemma new_var: (x:Z) (EX y:Z |(x=y)). Intros x; Exists x; Trivial with arith. Qed. Theorem Zne_left : (x,y:Z) (Zne x y) -> (Zne (Zplus x (Zopp y)) ZERO). Intros x y; Unfold Zne; Unfold not; Intros H1 H2; Apply H1; Apply Zsimpl_plus_l with (Zopp y); Rewrite Zplus_inverse_l; Rewrite Zplus_sym; Trivial with arith. Qed. Theorem Zegal_left : (x,y:Z) (x=y) -> (Zplus x (Zopp y)) = ZERO. Intros x y H; Apply (Zsimpl_plus_l y);Rewrite -> Zplus_permute; Rewrite -> Zplus_inverse_r;Do 2 Rewrite -> Zero_right;Assumption. Qed. Theorem Zle_left : (x,y:Z) (Zle x y) -> (Zle ZERO (Zplus y (Zopp x))). Intros x y H; Replace ZERO with (Zplus x (Zopp x)). Apply Zle_reg_r; Trivial. Apply Zplus_inverse_r. Qed. Theorem Zle_left_rev : (x,y:Z) (Zle ZERO (Zplus y (Zopp x))) -> (Zle x y). Intros x y H; Apply (Zsimpl_le_plus_r (Zopp x)). Rewrite Zplus_inverse_r; Trivial. Qed. Theorem Zlt_left_rev : (x,y:Z) (Zlt ZERO (Zplus y (Zopp x))) -> (Zlt x y). Intros x y H; Apply Zsimpl_lt_plus_r with (Zopp x). Rewrite Zplus_inverse_r; Trivial. Qed. Theorem Zlt_left : (x,y:Z) (Zlt x y) -> (Zle ZERO (Zplus (Zplus y (NEG xH)) (Zopp x))). Intros x y H; Apply Zle_left; Apply Zle_S_n; Change (Zle (Zs x) (Zs (Zpred y))); Rewrite <- Zs_pred; Apply Zlt_le_S; Assumption. Qed. Theorem Zlt_left_lt : (x,y:Z) (Zlt x y) -> (Zlt ZERO (Zplus y (Zopp x))). Intros x y H; Replace ZERO with (Zplus x (Zopp x)). Apply Zlt_reg_r; Trivial. Apply Zplus_inverse_r. Qed. Theorem Zge_left : (x,y:Z) (Zge x y) -> (Zle ZERO (Zplus x (Zopp y))). Intros x y H; Apply Zle_left; Apply Zge_le; Assumption. Qed. Theorem Zgt_left : (x,y:Z) (Zgt x y) -> (Zle ZERO (Zplus (Zplus x (NEG xH)) (Zopp y))). Intros x y H; Apply Zlt_left; Apply Zgt_lt; Assumption. Qed. Theorem Zgt_left_gt : (x,y:Z) (Zgt x y) -> (Zgt (Zplus x (Zopp y)) ZERO). Intros x y H; Replace ZERO with (Zplus y (Zopp y)). Apply Zgt_reg_r; Trivial. Apply Zplus_inverse_r. Qed. Theorem Zgt_left_rev : (x,y:Z) (Zgt (Zplus x (Zopp y)) ZERO) -> (Zgt x y). Intros x y H; Apply Zsimpl_gt_plus_r with (Zopp y). Rewrite Zplus_inverse_r; Trivial. Qed. Theorem Zopp_one : (x:Z)(Zopp x)=(Zmult x (NEG xH)). Induction x; Intros; Rewrite Zmult_sym; Auto with arith. Qed. Theorem Zopp_Zmult_r : (x,y:Z)(Zopp (Zmult x y)) = (Zmult x (Zopp y)). Intros x y; Rewrite Zmult_sym; Rewrite <- Zopp_Zmult; Apply Zmult_sym. Qed. Theorem Zmult_Zopp_left : (x,y:Z)(Zmult (Zopp x) y) = (Zmult x (Zopp y)). Intros; Rewrite Zopp_Zmult; Rewrite Zopp_Zmult_r; Trivial with arith. Qed. Theorem Zopp_Zmult_l : (x,y:Z)(Zopp (Zmult x y)) = (Zmult (Zopp x) y). Intros x y; Symmetry; Apply Zopp_Zmult. Qed. Theorem Zred_factor0 : (x:Z) x = (Zmult x (POS xH)). Intro x; Rewrite (Zmult_n_1 x); Trivial with arith. Qed. Theorem Zred_factor1 : (x:Z) (Zplus x x) = (Zmult x (POS (xO xH))). Intros x; Pattern 1 2 x ; Rewrite <- (Zmult_n_1 x); Rewrite <- Zmult_plus_distr_r; Auto with arith. Qed. Theorem Zred_factor2 : (x,y:Z) (Zplus x (Zmult x y)) = (Zmult x (Zplus (POS xH) y)). Intros x y; Pattern 1 x ; Rewrite <- (Zmult_n_1 x); Rewrite <- Zmult_plus_distr_r; Trivial with arith. Qed. Theorem Zred_factor3 : (x,y:Z) (Zplus (Zmult x y) x) = (Zmult x (Zplus (POS xH) y)). Intros x y; Pattern 2 x ; Rewrite <- (Zmult_n_1 x); Rewrite <- Zmult_plus_distr_r; Rewrite Zplus_sym; Trivial with arith. Qed. Theorem Zred_factor4 : (x,y,z:Z) (Zplus (Zmult x y) (Zmult x z)) = (Zmult x (Zplus y z)). Intros x y z; Symmetry; Apply Zmult_plus_distr_r. Qed. Theorem Zred_factor5 : (x,y:Z) (Zplus (Zmult x ZERO) y) = y. Intros x y; Rewrite <- Zmult_n_O;Auto with arith. Qed. Theorem Zred_factor6 : (x:Z) x = (Zplus x ZERO). Intro; Rewrite Zero_right; Trivial with arith. Qed. Theorem Zcompare_Zplus_compatible2 : (r:relation)(x,y,z,t:Z) (Zcompare x y) = r -> (Zcompare z t) = r -> (Zcompare (Zplus x z) (Zplus y t)) = r. Intros r x y z t; Case r; [ Intros H1 H2; Elim (Zcompare_EGAL x y); Elim (Zcompare_EGAL z t); Intros H3 H4 H5 H6; Rewrite H3; [ Rewrite H5; [ Elim (Zcompare_EGAL (Zplus y t) (Zplus y t)); Auto with arith | Auto with arith ] | Auto with arith ] | Intros H1 H2; Elim (Zcompare_ANTISYM (Zplus y t) (Zplus x z)); Intros H3 H4; Apply H3; Apply Zcompare_trans_SUPERIEUR with y:=(Zplus y z) ; [ Rewrite Zcompare_Zplus_compatible; Elim (Zcompare_ANTISYM t z); Auto with arith | Do 2 Rewrite <- (Zplus_sym z); Rewrite Zcompare_Zplus_compatible; Elim (Zcompare_ANTISYM y x); Auto with arith] | Intros H1 H2; Apply Zcompare_trans_SUPERIEUR with y:=(Zplus x t) ; [ Rewrite Zcompare_Zplus_compatible; Assumption | Do 2 Rewrite <- (Zplus_sym t); Rewrite Zcompare_Zplus_compatible; Assumption]]. Qed. Lemma add_x_x : (x:positive) (add x x) = (xO x). Intros p; Apply convert_intro; Simpl; Rewrite convert_add; Unfold 3 convert ; Simpl; Rewrite ZL6; Trivial with arith. Qed. Theorem Zcompare_Zmult_compatible : (x:positive)(y,z:Z) (Zcompare (Zmult (POS x) y) (Zmult (POS x) z)) = (Zcompare y z). Induction x; [ Intros p H y z; Cut (POS (xI p))=(Zplus (Zplus (POS p) (POS p)) (POS xH)); [ Intros E; Rewrite E; Do 4 Rewrite Zmult_plus_distr_l; Do 2 Rewrite Zmult_one; Apply Zcompare_Zplus_compatible2; [ Apply Zcompare_Zplus_compatible2; Apply H | Trivial with arith] | Simpl; Rewrite (add_x_x p); Trivial with arith] | Intros p H y z; Cut (POS (xO p))=(Zplus (POS p) (POS p)); [ Intros E; Rewrite E; Do 2 Rewrite Zmult_plus_distr_l; Apply Zcompare_Zplus_compatible2; Apply H | Simpl; Rewrite (add_x_x p); Trivial with arith] | Intros y z; Do 2 Rewrite Zmult_one; Trivial with arith]. Qed. Theorem Zmult_eq: (x,y:Z) ~(x=ZERO) -> (Zmult y x) = ZERO -> y = ZERO. Intros x y; Case x; [ Intro; Absurd ZERO=ZERO; Auto with arith | Intros p H1 H2; Elim (Zcompare_EGAL y ZERO); Intros H3 H4; Apply H3; Rewrite <- (Zcompare_Zmult_compatible p); Rewrite -> Zero_mult_right; Rewrite -> Zmult_sym; Elim (Zcompare_EGAL (Zmult y (POS p)) ZERO); Auto with arith | Intros p H1 H2; Apply Zopp_intro; Simpl; Elim (Zcompare_EGAL (Zopp y) ZERO); Intros H3 H4; Apply H3; Rewrite <- (Zcompare_Zmult_compatible p); Rewrite -> Zero_mult_right; Rewrite -> Zmult_sym; Rewrite -> Zmult_Zopp_left; Simpl; Elim (Zcompare_EGAL (Zmult y (NEG p)) ZERO); Auto with arith]. Qed. Theorem Z_eq_mult: (x,y:Z) y = ZERO -> (Zmult y x) = ZERO. Intros x y H; Rewrite H; Auto with arith. Qed. Theorem Zmult_le: (x,y:Z) (Zgt x ZERO) -> (Zle ZERO (Zmult y x)) -> (Zle ZERO y). Intros x y; Case x; [ Simpl; Unfold Zgt ; Simpl; Intros H; Discriminate H | Intros p H1; Unfold Zle; Rewrite -> Zmult_sym; Pattern 1 ZERO ; Rewrite <- (Zero_mult_right (POS p)); Rewrite Zcompare_Zmult_compatible; Auto with arith | Intros p; Unfold Zgt ; Simpl; Intros H; Discriminate H]. Qed. Theorem Zle_ZERO_mult : (x,y:Z) (Zle ZERO x) -> (Zle ZERO y) -> (Zle ZERO (Zmult x y)). Intros x y; Case x. Intros; Rewrite Zero_mult_left; Trivial. Intros p H1; Unfold Zle. Pattern 2 ZERO ; Rewrite <- (Zero_mult_right (POS p)). Rewrite Zcompare_Zmult_compatible; Trivial. Intros p H1 H2; Absurd (Zgt ZERO (NEG p)); Trivial. Unfold Zgt; Simpl; Auto with zarith. Qed. Lemma Zgt_ZERO_mult: (a,b:Z) (Zgt a ZERO)->(Zgt b ZERO) ->(Zgt (Zmult a b) ZERO). Intros x y; Case x. Intros H; Discriminate H. Intros p H1; Unfold Zgt; Pattern 2 ZERO ; Rewrite <- (Zero_mult_right (POS p)). Rewrite Zcompare_Zmult_compatible; Trivial. Intros p H; Discriminate H. Qed. Theorem Zle_mult: (x,y:Z) (Zgt x ZERO) -> (Zle ZERO y) -> (Zle ZERO (Zmult y x)). Intros x y H1 H2; Apply Zle_ZERO_mult; Trivial. Apply Zlt_le_weak; Apply Zgt_lt; Trivial. Qed. Theorem Zmult_lt: (x,y:Z) (Zgt x ZERO) -> (Zlt ZERO (Zmult y x)) -> (Zlt ZERO y). Intros x y; Case x; [ Simpl; Unfold Zgt ; Simpl; Intros H; Discriminate H | Intros p H1; Unfold Zlt; Rewrite -> Zmult_sym; Pattern 1 ZERO ; Rewrite <- (Zero_mult_right (POS p)); Rewrite Zcompare_Zmult_compatible; Auto with arith | Intros p; Unfold Zgt ; Simpl; Intros H; Discriminate H]. Qed. Theorem Zmult_gt: (x,y:Z) (Zgt x ZERO) -> (Zgt (Zmult x y) ZERO) -> (Zgt y ZERO). Intros x y; Case x. Intros H; Discriminate H. Intros p H1; Unfold Zgt. Pattern 1 ZERO ; Rewrite <- (Zero_mult_right (POS p)). Rewrite Zcompare_Zmult_compatible; Trivial. Intros p H; Discriminate H. Qed. Theorem Zle_mult_approx: (x,y,z:Z) (Zgt x ZERO) -> (Zgt z ZERO) -> (Zle ZERO y) -> (Zle ZERO (Zplus (Zmult y x) z)). Intros x y z H1 H2 H3; Apply Zle_trans with m:=(Zmult y x) ; [ Apply Zle_mult; Assumption | Pattern 1 (Zmult y x) ; Rewrite <- Zero_right; Apply Zle_reg_l; Apply Zlt_le_weak; Apply Zgt_lt; Assumption]. Qed. Lemma Zle_Zmult_pos_right : (a,b,c : Z) (Zle a b) -> (Zle ZERO c) -> (Zle (Zmult a c) (Zmult b c)). Intros a b c H1 H2; Apply Zle_left_rev. Rewrite Zopp_Zmult_l. Rewrite <- Zmult_plus_distr_l. Apply Zle_ZERO_mult; Trivial. Apply Zle_left; Trivial. Qed. Lemma Zle_Zmult_pos_left : (a,b,c : Z) (Zle a b) -> (Zle ZERO c) -> (Zle (Zmult c a) (Zmult c b)). Intros a b c H1 H2; Rewrite (Zmult_sym c a);Rewrite (Zmult_sym c b). Apply Zle_Zmult_pos_right; Trivial. Qed. Lemma Zge_Zmult_pos_right : (a,b,c : Z) (Zge a b) -> (Zge c ZERO) -> (Zge (Zmult a c) (Zmult b c)). Intros a b c H1 H2; Apply Zle_ge. Apply Zle_Zmult_pos_right; Apply Zge_le; Trivial. Qed. Lemma Zge_Zmult_pos_left : (a,b,c : Z) (Zge a b) -> (Zge c ZERO) -> (Zge (Zmult c a) (Zmult c b)). Intros a b c H1 H2; Apply Zle_ge. Apply Zle_Zmult_pos_left; Apply Zge_le; Trivial. Qed. Lemma Zge_Zmult_pos_compat : (a,b,c,d : Z) (Zge a c) -> (Zge b d) -> (Zge c ZERO) -> (Zge d ZERO) -> (Zge (Zmult a b) (Zmult c d)). Intros a b c d H0 H1 H2 H3. Apply Zge_trans with (Zmult a d). Apply Zge_Zmult_pos_left; Trivial. Apply Zge_trans with c; Trivial. Apply Zge_Zmult_pos_right; Trivial. Qed. Lemma Zle_mult_simpl : (a,b,c:Z) (Zgt c ZERO)->(Zle (Zmult a c) (Zmult b c))->(Zle a b). Intros a b c H1 H2; Apply Zle_left_rev. Apply Zmult_le with c; Trivial. Rewrite Zmult_plus_distr_l. Rewrite <- Zopp_Zmult_l. Apply Zle_left; Trivial. Qed. Lemma Zge_mult_simpl : (a,b,c:Z) (Zgt c ZERO)->(Zge (Zmult a c) (Zmult b c))->(Zge a b). Intros a b c H1 H2; Apply Zle_ge; Apply Zle_mult_simpl with c; Trivial. Apply Zge_le; Trivial. Qed. Lemma Zgt_mult_simpl : (a,b,c:Z) (Zgt c ZERO)->(Zgt (Zmult a c) (Zmult b c))->(Zgt a b). Intros a b c H1 H2; Apply Zgt_left_rev. Apply Zmult_gt with c; Trivial. Rewrite Zmult_sym. Rewrite Zmult_plus_distr_l. Rewrite <- Zopp_Zmult_l. Apply Zgt_left_gt; Trivial. Qed. Lemma Zgt_square_simpl: (x, y : Z) (Zge x ZERO) -> (Zge y ZERO) -> (Zgt (Zmult x x) (Zmult y y)) -> (Zgt x y). Intros x y H0 H1 H2. Case (dec_Zlt y x). Intro; Apply Zlt_gt; Trivial. Intros H3; Cut (Zge y x). Intros H. Elim Zgt_not_le with 1 := H2. Apply Zge_le. Apply Zge_Zmult_pos_compat; Auto. Apply not_Zlt; Trivial. Qed. Theorem Zmult_le_approx: (x,y,z:Z) (Zgt x ZERO) -> (Zgt x z) -> (Zle ZERO (Zplus (Zmult y x) z)) -> (Zle ZERO y). Intros x y z H1 H2 H3; Apply Zlt_n_Sm_le; Apply (Zmult_lt x); [ Assumption | Apply Zle_lt_trans with 1:=H3 ; Rewrite <- Zmult_Sm_n; Apply Zlt_reg_l; Apply Zgt_lt; Assumption]. Qed. Theorem OMEGA1 : (x,y:Z) (x=y) -> (Zle ZERO x) -> (Zle ZERO y). Intros x y H; Rewrite H; Auto with arith. Qed. Theorem OMEGA2 : (x,y:Z) (Zle ZERO x) -> (Zle ZERO y) -> (Zle ZERO (Zplus x y)). Intros x y H1 H2;Rewrite <- (Zero_left ZERO); Apply Zle_plus_plus; Assumption. Qed. Theorem OMEGA3 : (x,y,k:Z)(Zgt k ZERO)-> (x=(Zmult y k)) -> (x=ZERO) -> (y=ZERO). Intros x y k H1 H2 H3; Apply (Zmult_eq k); [ Unfold not ; Intros H4; Absurd (Zgt k ZERO); [ Rewrite H4; Unfold Zgt ; Simpl; Discriminate | Assumption] | Rewrite <- H2; Assumption]. Qed. Theorem OMEGA4 : (x,y,z:Z)(Zgt x ZERO) -> (Zgt y x) -> ~(Zplus (Zmult z y) x) = ZERO. Unfold not ; Intros x y z H1 H2 H3; Cut (Zgt y ZERO); [ Intros H4; Cut (Zle ZERO (Zplus (Zmult z y) x)); [ Intros H5; Generalize (Zmult_le_approx y z x H4 H2 H5) ; Intros H6; Absurd (Zgt (Zplus (Zmult z y) x) ZERO); [ Rewrite -> H3; Unfold Zgt ; Simpl; Discriminate | Apply Zle_gt_trans with x ; [ Pattern 1 x ; Rewrite <- (Zero_left x); Apply Zle_reg_r; Rewrite -> Zmult_sym; Generalize H4 ; Unfold Zgt; Case y; [ Simpl; Intros H7; Discriminate H7 | Intros p H7; Rewrite <- (Zero_mult_right (POS p)); Unfold Zle ; Rewrite -> Zcompare_Zmult_compatible; Exact H6 | Simpl; Intros p H7; Discriminate H7] | Assumption]] | Rewrite -> H3; Unfold Zle ; Simpl; Discriminate] | Apply Zgt_trans with x ; [ Assumption | Assumption]]. Qed. Theorem OMEGA5: (x,y,z:Z)(x=ZERO) -> (y=ZERO) -> (Zplus x (Zmult y z)) = ZERO. Intros x y z H1 H2; Rewrite H1; Rewrite H2; Simpl; Trivial with arith. Qed. Theorem OMEGA6: (x,y,z:Z)(Zle ZERO x) -> (y=ZERO) -> (Zle ZERO (Zplus x (Zmult y z))). Intros x y z H1 H2; Rewrite H2; Simpl; Rewrite Zero_right; Assumption. Qed. Theorem OMEGA7: (x,y,z,t:Z)(Zgt z ZERO) -> (Zgt t ZERO) -> (Zle ZERO x) -> (Zle ZERO y) -> (Zle ZERO (Zplus (Zmult x z) (Zmult y t))). Intros x y z t H1 H2 H3 H4; Rewrite <- (Zero_left ZERO); Apply Zle_plus_plus; Apply Zle_mult; Assumption. Qed. Theorem OMEGA8: (x,y:Z) (Zle ZERO x) -> (Zle ZERO y) -> x = (Zopp y) -> x = ZERO. Intros x y H1 H2 H3; Elim (Zle_lt_or_eq ZERO x H1); [ Intros H4; Absurd (Zlt ZERO x); [ Change (Zge ZERO x); Apply Zle_ge; Apply (Zsimpl_le_plus_l y); Rewrite -> H3; Rewrite Zplus_inverse_r; Rewrite Zero_right; Assumption | Assumption] | Intros H4; Rewrite -> H4; Trivial with arith]. Qed. Theorem OMEGA9:(x,y,z,t:Z) y=ZERO -> x = z -> (Zplus y (Zmult (Zplus (Zopp x) z) t)) = ZERO. Intros x y z t H1 H2; Rewrite H2; Rewrite Zplus_inverse_l; Rewrite Zero_mult_left; Rewrite Zero_right; Assumption. Qed. Theorem OMEGA10:(v,c1,c2,l1,l2,k1,k2:Z) (Zplus (Zmult (Zplus (Zmult v c1) l1) k1) (Zmult (Zplus (Zmult v c2) l2) k2)) = (Zplus (Zmult v (Zplus (Zmult c1 k1) (Zmult c2 k2))) (Zplus (Zmult l1 k1) (Zmult l2 k2))). Intros; Repeat (Rewrite Zmult_plus_distr_l Orelse Rewrite Zmult_plus_distr_r); Repeat Rewrite Zmult_assoc; Repeat Elim Zplus_assoc; Rewrite (Zplus_permute (Zmult l1 k1) (Zmult (Zmult v c2) k2)); Trivial with arith. Qed. Theorem OMEGA11:(v1,c1,l1,l2,k1:Z) (Zplus (Zmult (Zplus (Zmult v1 c1) l1) k1) l2) = (Zplus (Zmult v1 (Zmult c1 k1)) (Zplus (Zmult l1 k1) l2)). Intros; Repeat (Rewrite Zmult_plus_distr_l Orelse Rewrite Zmult_plus_distr_r); Repeat Rewrite Zmult_assoc; Repeat Elim Zplus_assoc; Trivial with arith. Qed. Theorem OMEGA12:(v2,c2,l1,l2,k2:Z) (Zplus l1 (Zmult (Zplus (Zmult v2 c2) l2) k2)) = (Zplus (Zmult v2 (Zmult c2 k2)) (Zplus l1 (Zmult l2 k2))). Intros; Repeat (Rewrite Zmult_plus_distr_l Orelse Rewrite Zmult_plus_distr_r); Repeat Rewrite Zmult_assoc; Repeat Elim Zplus_assoc; Rewrite Zplus_permute; Trivial with arith. Qed. Theorem OMEGA13:(v,l1,l2:Z)(x:positive) (Zplus (Zplus (Zmult v (POS x)) l1) (Zplus (Zmult v (NEG x)) l2)) = (Zplus l1 l2). Intros; Rewrite Zplus_assoc; Rewrite (Zplus_sym (Zmult v (POS x)) l1); Rewrite (Zplus_assoc_r l1); Rewrite <- Zmult_plus_distr_r; Rewrite <- Zopp_NEG; Rewrite (Zplus_sym (Zopp (NEG x)) (NEG x)); Rewrite Zplus_inverse_r; Rewrite Zero_mult_right; Rewrite Zero_right; Trivial with arith. Qed. Theorem OMEGA14:(v,l1,l2:Z)(x:positive) (Zplus (Zplus (Zmult v (NEG x)) l1) (Zplus (Zmult v (POS x)) l2)) = (Zplus l1 l2). Intros; Rewrite Zplus_assoc; Rewrite (Zplus_sym (Zmult v (NEG x)) l1); Rewrite (Zplus_assoc_r l1); Rewrite <- Zmult_plus_distr_r; Rewrite <- Zopp_NEG; Rewrite Zplus_inverse_r; Rewrite Zero_mult_right; Rewrite Zero_right; Trivial with arith. Qed. Theorem OMEGA15:(v,c1,c2,l1,l2,k2:Z) (Zplus (Zplus (Zmult v c1) l1) (Zmult (Zplus (Zmult v c2) l2) k2)) = (Zplus (Zmult v (Zplus c1 (Zmult c2 k2))) (Zplus l1 (Zmult l2 k2))). Intros; Repeat (Rewrite Zmult_plus_distr_l Orelse Rewrite Zmult_plus_distr_r); Repeat Rewrite Zmult_assoc; Repeat Elim Zplus_assoc; Rewrite (Zplus_permute l1 (Zmult (Zmult v c2) k2)); Trivial with arith. Qed. Theorem OMEGA16: (v,c,l,k:Z) (Zmult (Zplus (Zmult v c) l) k) = (Zplus (Zmult v (Zmult c k)) (Zmult l k)). Intros; Repeat (Rewrite Zmult_plus_distr_l Orelse Rewrite Zmult_plus_distr_r); Repeat Rewrite Zmult_assoc; Repeat Elim Zplus_assoc; Trivial with arith. Qed. Theorem OMEGA17: (x,y,z:Z)(Zne x ZERO) -> (y=ZERO) -> (Zne (Zplus x (Zmult y z)) ZERO). Unfold Zne not; Intros x y z H1 H2 H3; Apply H1; Apply Zsimpl_plus_l with (Zmult y z); Rewrite Zplus_sym; Rewrite H3; Rewrite H2; Auto with arith. Qed. Theorem OMEGA18: (x,y,k:Z) (x=(Zmult y k)) -> (Zne x ZERO) -> (Zne y ZERO). Unfold Zne not; Intros x y k H1 H2 H3; Apply H2; Rewrite H1; Rewrite H3; Auto with arith. Qed. Theorem OMEGA19: (x:Z) (Zne x ZERO) -> (Zle ZERO (Zplus x (NEG xH))) \/ (Zle ZERO (Zplus (Zmult x (NEG xH)) (NEG xH))). Unfold Zne ; Intros x H; Elim (Zle_or_lt ZERO x); [ Intros H1; Elim Zle_lt_or_eq with 1:=H1; [ Intros H2; Left; Change (Zle ZERO (Zpred x)); Apply Zle_S_n; Rewrite <- Zs_pred; Apply Zlt_le_S; Assumption | Intros H2; Absurd x=ZERO; Auto with arith] | Intros H1; Right; Rewrite <- Zopp_one; Rewrite Zplus_sym; Apply Zle_left; Apply Zle_S_n; Simpl; Apply Zlt_le_S; Auto with arith]. Qed. Theorem OMEGA20: (x,y,z:Z)(Zne x ZERO) -> (y=ZERO) -> (Zne (Zplus x (Zmult y z)) ZERO). Unfold Zne not; Intros x y z H1 H2 H3; Apply H1; Rewrite H2 in H3; Simpl in H3; Rewrite Zero_right in H3; Trivial with arith. Qed. Definition fast_Zplus_sym := [x,y:Z][P:Z -> Prop][H: (P (Zplus y x))] (eq_ind_r Z (Zplus y x) P H (Zplus x y) (Zplus_sym x y)). Definition fast_Zplus_assoc_r := [n,m,p:Z][P:Z -> Prop][H : (P (Zplus n (Zplus m p)))] (eq_ind_r Z (Zplus n (Zplus m p)) P H (Zplus (Zplus n m) p) (Zplus_assoc_r n m p)). Definition fast_Zplus_assoc_l := [n,m,p:Z][P:Z -> Prop][H : (P (Zplus (Zplus n m) p))] (eq_ind_r Z (Zplus (Zplus n m) p) P H (Zplus n (Zplus m p)) (Zplus_assoc_l n m p)). Definition fast_Zplus_permute := [n,m,p:Z][P:Z -> Prop][H : (P (Zplus m (Zplus n p)))] (eq_ind_r Z (Zplus m (Zplus n p)) P H (Zplus n (Zplus m p)) (Zplus_permute n m p)). Definition fast_OMEGA10 := [v,c1,c2,l1,l2,k1,k2:Z][P:Z -> Prop] [H : (P (Zplus (Zmult v (Zplus (Zmult c1 k1) (Zmult c2 k2))) (Zplus (Zmult l1 k1) (Zmult l2 k2))))] (eq_ind_r Z (Zplus (Zmult v (Zplus (Zmult c1 k1) (Zmult c2 k2))) (Zplus (Zmult l1 k1) (Zmult l2 k2))) P H (Zplus (Zmult (Zplus (Zmult v c1) l1) k1) (Zmult (Zplus (Zmult v c2) l2) k2)) (OMEGA10 v c1 c2 l1 l2 k1 k2)). Definition fast_OMEGA11 := [v1,c1,l1,l2,k1:Z][P:Z -> Prop] [H : (P (Zplus (Zmult v1 (Zmult c1 k1)) (Zplus (Zmult l1 k1) l2)))] (eq_ind_r Z (Zplus (Zmult v1 (Zmult c1 k1)) (Zplus (Zmult l1 k1) l2)) P H (Zplus (Zmult (Zplus (Zmult v1 c1) l1) k1) l2) (OMEGA11 v1 c1 l1 l2 k1)). Definition fast_OMEGA12 := [v2,c2,l1,l2,k2:Z][P:Z -> Prop] [H : (P (Zplus (Zmult v2 (Zmult c2 k2)) (Zplus l1 (Zmult l2 k2))))] (eq_ind_r Z (Zplus (Zmult v2 (Zmult c2 k2)) (Zplus l1 (Zmult l2 k2))) P H (Zplus l1 (Zmult (Zplus (Zmult v2 c2) l2) k2)) (OMEGA12 v2 c2 l1 l2 k2)). Definition fast_OMEGA15 := [v,c1,c2,l1,l2,k2 :Z][P:Z -> Prop] [H : (P (Zplus (Zmult v (Zplus c1 (Zmult c2 k2))) (Zplus l1 (Zmult l2 k2))))] (eq_ind_r Z (Zplus (Zmult v (Zplus c1 (Zmult c2 k2))) (Zplus l1 (Zmult l2 k2))) P H (Zplus (Zplus (Zmult v c1) l1) (Zmult (Zplus (Zmult v c2) l2) k2)) (OMEGA15 v c1 c2 l1 l2 k2)). Definition fast_OMEGA16 := [v,c,l,k :Z][P:Z -> Prop] [H : (P (Zplus (Zmult v (Zmult c k)) (Zmult l k)))] (eq_ind_r Z (Zplus (Zmult v (Zmult c k)) (Zmult l k)) P H (Zmult (Zplus (Zmult v c) l) k) (OMEGA16 v c l k)). Definition fast_OMEGA13 := [v,l1,l2 :Z][x:positive][P:Z -> Prop] [H : (P (Zplus l1 l2))] (eq_ind_r Z (Zplus l1 l2) P H (Zplus (Zplus (Zmult v (POS x)) l1) (Zplus (Zmult v (NEG x)) l2)) (OMEGA13 v l1 l2 x )). Definition fast_OMEGA14 := [v,l1,l2 :Z][x:positive][P:Z -> Prop] [H : (P (Zplus l1 l2))] (eq_ind_r Z (Zplus l1 l2) P H (Zplus (Zplus (Zmult v (NEG x)) l1) (Zplus (Zmult v (POS x)) l2)) (OMEGA14 v l1 l2 x )). Definition fast_Zred_factor0:= [x:Z][P:Z -> Prop] [H : (P (Zmult x (POS xH)) )] (eq_ind_r Z (Zmult x (POS xH)) P H x (Zred_factor0 x)). Definition fast_Zopp_one := [x:Z][P:Z -> Prop] [H : (P (Zmult x (NEG xH)))] (eq_ind_r Z (Zmult x (NEG xH)) P H (Zopp x) (Zopp_one x)). Definition fast_Zmult_sym := [x,y :Z][P:Z -> Prop] [H : (P (Zmult y x))] (eq_ind_r Z (Zmult y x) P H (Zmult x y) (Zmult_sym x y )). Definition fast_Zopp_Zplus := [x,y :Z][P:Z -> Prop] [H : (P (Zplus (Zopp x) (Zopp y)) )] (eq_ind_r Z (Zplus (Zopp x) (Zopp y)) P H (Zopp (Zplus x y)) (Zopp_Zplus x y )). Definition fast_Zopp_Zopp := [x:Z][P:Z -> Prop] [H : (P x )] (eq_ind_r Z x P H (Zopp (Zopp x)) (Zopp_Zopp x)). Definition fast_Zopp_Zmult_r := [x,y:Z][P:Z -> Prop] [H : (P (Zmult x (Zopp y)))] (eq_ind_r Z (Zmult x (Zopp y)) P H (Zopp (Zmult x y)) (Zopp_Zmult_r x y )). Definition fast_Zmult_plus_distr := [n,m,p:Z][P:Z -> Prop] [H : (P (Zplus (Zmult n p) (Zmult m p)))] (eq_ind_r Z (Zplus (Zmult n p) (Zmult m p)) P H (Zmult (Zplus n m) p) (Zmult_plus_distr_l n m p)). Definition fast_Zmult_Zopp_left:= [x,y:Z][P:Z -> Prop] [H : (P (Zmult x (Zopp y)))] (eq_ind_r Z (Zmult x (Zopp y)) P H (Zmult (Zopp x) y) (Zmult_Zopp_left x y)). Definition fast_Zmult_assoc_r := [n,m,p :Z][P:Z -> Prop] [H : (P (Zmult n (Zmult m p)))] (eq_ind_r Z (Zmult n (Zmult m p)) P H (Zmult (Zmult n m) p) (Zmult_assoc_r n m p)). Definition fast_Zred_factor1 := [x:Z][P:Z -> Prop] [H : (P (Zmult x (POS (xO xH))) )] (eq_ind_r Z (Zmult x (POS (xO xH))) P H (Zplus x x) (Zred_factor1 x)). Definition fast_Zred_factor2 := [x,y:Z][P:Z -> Prop] [H : (P (Zmult x (Zplus (POS xH) y)))] (eq_ind_r Z (Zmult x (Zplus (POS xH) y)) P H (Zplus x (Zmult x y)) (Zred_factor2 x y)). Definition fast_Zred_factor3 := [x,y:Z][P:Z -> Prop] [H : (P (Zmult x (Zplus (POS xH) y)))] (eq_ind_r Z (Zmult x (Zplus (POS xH) y)) P H (Zplus (Zmult x y) x) (Zred_factor3 x y)). Definition fast_Zred_factor4 := [x,y,z:Z][P:Z -> Prop] [H : (P (Zmult x (Zplus y z)))] (eq_ind_r Z (Zmult x (Zplus y z)) P H (Zplus (Zmult x y) (Zmult x z)) (Zred_factor4 x y z)). Definition fast_Zred_factor5 := [x,y:Z][P:Z -> Prop] [H : (P y)] (eq_ind_r Z y P H (Zplus (Zmult x ZERO) y) (Zred_factor5 x y)). Definition fast_Zred_factor6 := [x :Z][P:Z -> Prop] [H : (P(Zplus x ZERO) )] (eq_ind_r Z (Zplus x ZERO) P H x (Zred_factor6 x )).