(* -*- coding: utf-8 -*- *) (************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* Zne (n + - m) 0. Proof. unfold Zne. now rewrite <- Z.sub_move_0_r. Qed. Theorem Zegal_left n m : n = m -> n + - m = 0. Proof. apply Z.sub_move_0_r. Qed. Theorem Zle_left n m : n <= m -> 0 <= m + - n. Proof. apply Z.le_0_sub. Qed. Theorem Zle_left_rev n m : 0 <= m + - n -> n <= m. Proof. apply Z.le_0_sub. Qed. Theorem Zlt_left_rev n m : 0 < m + - n -> n < m. Proof. apply Z.lt_0_sub. Qed. Theorem Zlt_left_lt n m : n < m -> 0 < m + - n. Proof. apply Z.lt_0_sub. Qed. Theorem Zlt_left n m : n < m -> 0 <= m + -1 + - n. Proof. intros. rewrite Z.add_shuffle0. change (-1) with (- Z.succ 0). now apply Z.le_0_sub, Z.le_succ_l, Z.lt_0_sub. Qed. Theorem Zge_left n m : n >= m -> 0 <= n + - m. Proof. Z.swap_greater. apply Z.le_0_sub. Qed. Theorem Zgt_left n m : n > m -> 0 <= n + -1 + - m. Proof. Z.swap_greater. apply Zlt_left. Qed. Theorem Zgt_left_gt n m : n > m -> n + - m > 0. Proof. Z.swap_greater. apply Z.lt_0_sub. Qed. Theorem Zgt_left_rev n m : n + - m > 0 -> n > m. Proof. Z.swap_greater. apply Z.lt_0_sub. Qed. Theorem Zle_mult_approx n m p : n > 0 -> p > 0 -> 0 <= m -> 0 <= m * n + p. Proof. Z.swap_greater. intros. Z.order_pos. Qed. Theorem Zmult_le_approx n m p : n > 0 -> n > p -> 0 <= m * n + p -> 0 <= m. Proof. Z.swap_greater. intros. apply Z.lt_succ_r. apply Z.mul_pos_cancel_r with n; trivial. Z.nzsimpl. apply Z.le_lt_trans with (m*n+p); trivial. now apply Z.add_lt_mono_l. Qed.