(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* (Zlt x y) \/ (Zlt y x). Proof. Intros x y; Elim (Dcompare (Zcompare x y)); [ Intros H1 H2; Absurd x=y; [ Assumption | Elim (Zcompare_EGAL x y); Auto with arith] | Unfold Zlt ; Intros H; Elim H; Intros H1; [Auto with arith | Right; Elim (Zcompare_ANTISYM x y); Auto with arith]]. Qed. (** Relating strict and large orders *) Lemma Zgt_lt : (m,n:Z) (Zgt m n) -> (Zlt n m). Proof. Unfold Zgt Zlt ;Intros m n H; Elim (Zcompare_ANTISYM m n); Auto with arith. Qed. Lemma Zlt_gt : (m,n:Z) (Zlt m n) -> (Zgt n m). Proof. Unfold Zgt Zlt ;Intros m n H; Elim (Zcompare_ANTISYM n m); Auto with arith. Qed. Lemma Zge_le : (m,n:Z) (Zge m n) -> (Zle n m). Proof. Intros m n; Change ~(Zlt m n)-> ~(Zgt n m); Unfold not; Intros H1 H2; Apply H1; Apply Zgt_lt; Assumption. Qed. Lemma Zle_ge : (m,n:Z) (Zle m n) -> (Zge n m). Proof. Intros m n; Change ~(Zgt m n)-> ~(Zlt n m); Unfold not; Intros H1 H2; Apply H1; Apply Zlt_gt; Assumption. Qed. Lemma Zle_not_gt : (n,m:Z)(Zle n m) -> ~(Zgt n m). Proof. Trivial. Qed. Lemma Zgt_not_le : (n,m:Z)(Zgt n m) -> ~(Zle n m). Proof. Intros n m H1 H2; Apply H2; Assumption. Qed. Lemma Zle_not_lt : (n,m:Z)(Zle n m) -> ~(Zlt m n). Proof. Intros n m H1 H2. Assert H3:=(Zlt_gt ? ? H2). Apply Zle_not_gt with n m; Assumption. Qed. Lemma Zlt_not_le : (n,m:Z)(Zlt n m) -> ~(Zle m n). Proof. Intros n m H1 H2. Apply Zle_not_lt with m n; Assumption. Qed. Theorem not_Zge : (x,y:Z) ~(Zge x y) -> (Zlt x y). Proof. Unfold Zge Zlt ; Intros x y H; Apply dec_not_not; [ Exact (dec_Zlt x y) | Assumption]. Qed. Theorem not_Zlt : (x,y:Z) ~(Zlt x y) -> (Zge x y). Proof. Unfold Zlt Zge; Auto with arith. Qed. Lemma not_Zgt : (n,m:Z)~(Zgt n m) -> (Zle n m). Proof. Trivial. Qed. V7only [Notation Znot_gt_le := not_Zgt.]. Theorem not_Zle : (x,y:Z) ~(Zle x y) -> (Zgt x y). Proof. Unfold Zle Zgt ; Intros x y H; Apply dec_not_not; [ Exact (dec_Zgt x y) | Assumption]. Qed. (** Reflexivity *) Lemma Zle_n : (n:Z) (Zle n n). Proof. Intros n; Unfold Zle; Rewrite (Zcompare_x_x n); Discriminate. Qed. (** Antisymmetry *) Lemma Zle_antisym : (n,m:Z)(Zle n m)->(Zle m n)->n=m. Proof. Intros n m H1 H2; NewDestruct (Ztrichotomy n m) as [Hlt|[Heq|Hgt]]. Absurd (Zgt m n); [ Apply Zle_not_gt | Apply Zlt_gt]; Assumption. Assumption. Absurd (Zgt n m); [ Apply Zle_not_gt | Idtac]; Assumption. Qed. (** Asymmetry *) Lemma Zgt_not_sym : (n,m:Z)(Zgt n m) -> ~(Zgt m n). Proof. Unfold Zgt ;Intros n m H; Elim (Zcompare_ANTISYM n m); Intros H1 H2; Rewrite -> H1; [ Discriminate | Assumption ]. Qed. Lemma Zlt_not_sym : (n,m:Z)(Zlt n m) -> ~(Zlt m n). Proof. Intros n m H H1; Assert H2:(Zgt m n). Apply Zlt_gt; Assumption. Assert H3: (Zgt n m). Apply Zlt_gt; Assumption. Apply Zgt_not_sym with m n; Assumption. Qed. (** Irreflexivity *) Lemma Zgt_antirefl : (n:Z)~(Zgt n n). Proof. Intros n H; Apply (Zgt_not_sym n n H H). Qed. Lemma Zlt_n_n : (n:Z)~(Zlt n n). Proof. Intros n H; Apply (Zlt_not_sym n n H H). Qed. (** Large = strict or equal *) Lemma Zle_lt_or_eq : (n,m:Z)(Zle n m)->((Zlt n m) \/ n=m). Proof. Intros n m H; NewDestruct (Ztrichotomy n m) as [Hlt|[Heq|Hgt]]; [ Left; Assumption | Right; Assumption | Absurd (Zgt n m); [Apply Zle_not_gt|Idtac]; Assumption ]. Qed. Lemma Zlt_le_weak : (n,m:Z)(Zlt n m)->(Zle n m). Proof. Intros n m Hlt; Apply Znot_gt_le; Apply Zgt_not_sym; Apply Zlt_gt; Assumption. Qed. (** Dichotomy *) Lemma Zle_or_lt : (n,m:Z)(Zle n m)\/(Zlt m n). Proof. Intros n m; NewDestruct (Ztrichotomy n m) as [Hlt|[Heq|Hgt]]; [ Left; Apply Znot_gt_le; Intro Hgt; Assert Hgt':=(Zlt_gt ? ? Hlt); Apply Zgt_not_sym with m n; Assumption | Left; Rewrite Heq; Apply Zle_n | Right; Apply Zgt_lt; Assumption ]. Qed. (** Transitivity of strict orders *) Lemma Zgt_trans : (n,m,p:Z)(Zgt n m)->(Zgt m p)->(Zgt n p). Proof. Exact Zcompare_trans_SUPERIEUR. Qed. Lemma Zlt_trans : (n,m,p:Z)(Zlt n m)->(Zlt m p)->(Zlt n p). Proof. Intros n m p H1 H2; Apply Zgt_lt; Apply Zgt_trans with m:= m; Apply Zlt_gt; Assumption. Qed. (** Mixed transitivity *) Lemma Zle_gt_trans : (n,m,p:Z)(Zle m n)->(Zgt m p)->(Zgt n p). Proof. Intros n m p H1 H2; NewDestruct (Zle_lt_or_eq m n H1) as [Hlt|Heq]; [ Apply Zgt_trans with m; [Apply Zlt_gt; Assumption | Assumption ] | Rewrite <- Heq; Assumption ]. Qed. Lemma Zgt_le_trans : (n,m,p:Z)(Zgt n m)->(Zle p m)->(Zgt n p). Proof. Intros n m p H1 H2; NewDestruct (Zle_lt_or_eq p m H2) as [Hlt|Heq]; [ Apply Zgt_trans with m; [Assumption|Apply Zlt_gt; Assumption] | Rewrite Heq; Assumption ]. Qed. Lemma Zlt_le_trans : (n,m,p:Z)(Zlt n m)->(Zle m p)->(Zlt n p). Intros n m p H1 H2;Apply Zgt_lt;Apply Zle_gt_trans with m:=m; [ Assumption | Apply Zlt_gt;Assumption ]. Qed. Lemma Zle_lt_trans : (n,m,p:Z)(Zle n m)->(Zlt m p)->(Zlt n p). Proof. Intros n m p H1 H2;Apply Zgt_lt;Apply Zgt_le_trans with m:=m; [ Apply Zlt_gt;Assumption | Assumption ]. Qed. (** Transitivity of large orders *) Lemma Zle_trans : (n,m,p:Z)(Zle n m)->(Zle m p)->(Zle n p). Proof. Intros n m p H1 H2; Apply Znot_gt_le. Intro Hgt; Apply Zle_not_gt with n m. Assumption. Exact (Zgt_le_trans n p m Hgt H2). Qed. Lemma Zge_trans : (n, m, p : Z) (Zge n m) -> (Zge m p) -> (Zge n p). Proof. Intros n m p H1 H2. Apply Zle_ge. Apply Zle_trans with m; Apply Zge_le; Trivial. Qed. (** Compatibility of successor wrt to order *) Lemma Zle_n_S : (n,m:Z) (Zle m n) -> (Zle (Zs m) (Zs n)). Proof. Unfold Zle not ;Intros m n H1 H2; Apply H1; Rewrite <- (Zcompare_Zplus_compatible n m (POS xH)); Do 2 Rewrite (Zplus_sym (POS xH)); Exact H2. Qed. Lemma Zgt_n_S : (n,m:Z)(Zgt m n) -> (Zgt (Zs m) (Zs n)). Proof. Unfold Zgt; Intros n m H; Rewrite Zcompare_n_S; Auto with arith. Qed. (** Simplification of successor wrt to order *) Lemma Zgt_S_n : (n,p:Z)(Zgt (Zs p) (Zs n))->(Zgt p n). Proof. Unfold Zs Zgt;Intros n p;Do 2 Rewrite -> [m:Z](Zplus_sym m (POS xH)); Rewrite -> (Zcompare_Zplus_compatible p n (POS xH));Trivial with arith. Qed. Lemma Zle_S_n : (n,m:Z) (Zle (Zs m) (Zs n)) -> (Zle m n). Proof. Unfold Zle not ;Intros m n H1 H2;Apply H1; Unfold Zs ;Do 2 Rewrite <- (Zplus_sym (POS xH)); Rewrite -> (Zcompare_Zplus_compatible n m (POS xH));Assumption. Qed. (** Compatibility of addition wrt to order *) Lemma Zgt_reg_l : (n,m,p:Z)(Zgt n m)->(Zgt (Zplus p n) (Zplus p m)). Proof. Unfold Zgt; Intros n m p H; Rewrite (Zcompare_Zplus_compatible n m p); Assumption. Qed. Lemma Zgt_reg_r : (n,m,p:Z)(Zgt n m)->(Zgt (Zplus n p) (Zplus m p)). Proof. Intros n m p H; Rewrite (Zplus_sym n p); Rewrite (Zplus_sym m p); Apply Zgt_reg_l; Trivial. Qed. Lemma Zle_reg_l : (n,m,p:Z)(Zle n m)->(Zle (Zplus p n) (Zplus p m)). Proof. Intros n m p; Unfold Zle not ;Intros H1 H2;Apply H1; Rewrite <- (Zcompare_Zplus_compatible n m p); Assumption. Qed. Lemma Zle_reg_r : (n,m,p:Z) (Zle n m)->(Zle (Zplus n p) (Zplus m p)). Proof. Intros a b c;Do 2 Rewrite [n:Z](Zplus_sym n c); Exact (Zle_reg_l a b c). Qed. Lemma Zlt_reg_l : (n,m,p:Z)(Zlt n m)->(Zlt (Zplus p n) (Zplus p m)). Proof. Unfold Zlt ;Intros n m p; Rewrite Zcompare_Zplus_compatible;Trivial with arith. Qed. Lemma Zlt_reg_r : (n,m,p:Z)(Zlt n m)->(Zlt (Zplus n p) (Zplus m p)). Proof. Intros n m p H; Rewrite (Zplus_sym n p); Rewrite (Zplus_sym m p); Apply Zlt_reg_l; Trivial. Qed. Lemma Zlt_le_reg : (a,b,c,d:Z) (Zlt a b)->(Zle c d)->(Zlt (Zplus a c) (Zplus b d)). Proof. Intros a b c d H0 H1. Apply Zlt_le_trans with (Zplus b c). Apply Zlt_reg_r; Trivial. Apply Zle_reg_l; Trivial. Qed. Lemma Zle_lt_reg : (a,b,c,d:Z) (Zle a b)->(Zlt c d)->(Zlt (Zplus a c) (Zplus b d)). Proof. Intros a b c d H0 H1. Apply Zle_lt_trans with (Zplus b c). Apply Zle_reg_r; Trivial. Apply Zlt_reg_l; Trivial. Qed. Lemma Zle_plus_plus : (n,m,p,q:Z) (Zle n m)->(Zle p q)->(Zle (Zplus n p) (Zplus m q)). Proof. Intros n m p q; Intros H1 H2;Apply Zle_trans with m:=(Zplus n q); [ Apply Zle_reg_l;Assumption | Apply Zle_reg_r;Assumption ]. Qed. V7only [Set Implicit Arguments.]. Lemma Zlt_Zplus : (x1,x2,y1,y2:Z)`x1 < x2` -> `y1 < y2` -> `x1 + y1 < x2 + y2`. Intros; Apply Zle_lt_reg. Apply Zlt_le_weak; Assumption. Assumption. Qed. V7only [Unset Implicit Arguments.]. (** Compatibility of addition wrt to being positive *) Theorem Zle_0_plus : (x,y:Z) (Zle ZERO x) -> (Zle ZERO y) -> (Zle ZERO (Zplus x y)). Proof. Intros x y H1 H2;Rewrite <- (Zero_left ZERO); Apply Zle_plus_plus; Assumption. Qed. (** Simplification of addition wrt to order *) Lemma Zsimpl_gt_plus_l : (n,m,p:Z)(Zgt (Zplus p n) (Zplus p m))->(Zgt n m). Proof. Unfold Zgt; Intros n m p H; Rewrite <- (Zcompare_Zplus_compatible n m p); Assumption. Qed. Lemma Zsimpl_gt_plus_r : (n,m,p:Z)(Zgt (Zplus n p) (Zplus m p))->(Zgt n m). Proof. Intros n m p H; Apply Zsimpl_gt_plus_l with p. Rewrite (Zplus_sym p n); Rewrite (Zplus_sym p m); Trivial. Qed. Lemma Zsimpl_le_plus_l : (p,n,m:Z)(Zle (Zplus p n) (Zplus p m))->(Zle n m). Proof. Intros p n m; Unfold Zle not ;Intros H1 H2;Apply H1; Rewrite (Zcompare_Zplus_compatible n m p); Assumption. Qed. Lemma Zsimpl_le_plus_r : (p,n,m:Z)(Zle (Zplus n p) (Zplus m p))->(Zle n m). Proof. Intros p n m H; Apply Zsimpl_le_plus_l with p. Rewrite (Zplus_sym p n); Rewrite (Zplus_sym p m); Trivial. Qed. Lemma Zsimpl_lt_plus_l : (n,m,p:Z)(Zlt (Zplus p n) (Zplus p m))->(Zlt n m). Proof. Unfold Zlt ;Intros n m p; Rewrite Zcompare_Zplus_compatible;Trivial with arith. Qed. Lemma Zsimpl_lt_plus_r : (n,m,p:Z)(Zlt (Zplus n p) (Zplus m p))->(Zlt n m). Proof. Intros n m p H; Apply Zsimpl_lt_plus_l with p. Rewrite (Zplus_sym p n); Rewrite (Zplus_sym p m); Trivial. Qed. (** Order, predecessor and successor *) Lemma Zgt_Sn_n : (n:Z)(Zgt (Zs n) n). Proof. Exact Zcompare_Zs_SUPERIEUR. Qed. Lemma Zgt_le_S : (n,p:Z)(Zgt p n)->(Zle (Zs n) p). Proof. Unfold Zgt Zle; Intros n p H; Elim (Zcompare_et_un p n); Intros H1 H2; Unfold not ;Intros H3; Unfold not in H1; Apply H1; [ Assumption | Elim (Zcompare_ANTISYM (Zplus n (POS xH)) p);Intros H4 H5;Apply H4;Exact H3]. Qed. Lemma Zgt_S_le : (n,p:Z)(Zgt (Zs p) n)->(Zle n p). Proof. Intros n p H;Apply Zle_S_n; Apply Zgt_le_S; Assumption. Qed. Lemma Zle_S_gt : (n,m:Z) (Zle (Zs n) m) -> (Zgt m n). Proof. Intros n m H;Apply Zle_gt_trans with m:=(Zs n); [ Assumption | Apply Zgt_Sn_n ]. Qed. Lemma Zle_gt_S : (n,p:Z)(Zle n p)->(Zgt (Zs p) n). Proof. Intros n p H; Apply Zgt_le_trans with p. Apply Zgt_Sn_n. Assumption. Qed. Lemma Zgt_pred : (n,p:Z)(Zgt p (Zs n))->(Zgt (Zpred p) n). Proof. Unfold Zgt Zs Zpred ;Intros n p H; Rewrite <- [x,y:Z](Zcompare_Zplus_compatible x y (POS xH)); Rewrite (Zplus_sym p); Rewrite Zplus_assoc; Rewrite [x:Z](Zplus_sym x n); Simpl; Assumption. Qed. Lemma Zlt_ZERO_pred_le_ZERO : (n:Z) (Zlt ZERO n) -> (Zle ZERO (Zpred n)). Intros x H. Rewrite (Zs_pred x) in H. Apply Zgt_S_le. Apply Zlt_gt. Assumption. Qed. V7only [Set Implicit Arguments.]. Lemma Zgt0_le_pred : (y:Z) `y > 0` -> `0 <= (Zpred y)`. Intros; Apply Zlt_ZERO_pred_le_ZERO; Apply Zgt_lt. Assumption. Qed. V7only [Unset Implicit Arguments.]. (** Special cases of ordered integers *) Lemma Zle_n_Sn : (n:Z)(Zle n (Zs n)). Proof. Intros n; Apply Zgt_S_le;Apply Zgt_trans with m:=(Zs n) ;Apply Zgt_Sn_n. Qed. Lemma Zle_pred_n : (n:Z)(Zle (Zpred n) n). Proof. Intros n;Pattern 2 n ;Rewrite Zs_pred; Apply Zle_n_Sn. Qed. Lemma POS_gt_ZERO : (p:positive) (Zgt (POS p) ZERO). Unfold Zgt; Trivial. Qed. (* weaker but useful (in [Zpower] for instance) *) Lemma ZERO_le_POS : (p:positive) (Zle ZERO (POS p)). Intro; Unfold Zle; Discriminate. Qed. Lemma NEG_lt_ZERO : (p:positive)(Zlt (NEG p) ZERO). Unfold Zlt; Trivial. Qed. (** Weakening equality within order *) Lemma Zlt_not_eq : (x,y:Z)(Zlt x y) -> ~x=y. Proof. Unfold not; Intros x y H H0. Rewrite H0 in H. Apply (Zlt_n_n ? H). Qed. Lemma Zle_refl : (n,m:Z) n=m -> (Zle n m). Proof. Intros; Rewrite H; Apply Zle_n. Qed. (** Transitivity using successor *) Lemma Zgt_trans_S : (n,m,p:Z)(Zgt (Zs n) m)->(Zgt m p)->(Zgt n p). Proof. Intros n m p H1 H2;Apply Zle_gt_trans with m:=m; [ Apply Zgt_S_le; Assumption | Assumption ]. Qed. Lemma Zgt_S : (n,m:Z)(Zgt (Zs n) m)->((Zgt n m)\/(m=n)). Proof. Intros n m H. Assert Hle : (Zle m n). Apply Zgt_S_le; Assumption. NewDestruct (Zle_lt_or_eq ? ? Hle) as [Hlt|Heq]. Left; Apply Zlt_gt; Assumption. Right; Assumption. Qed. Hints Resolve Zle_n Zle_n_Sn Zle_trans Zle_n_S : zarith. Hints Immediate Zle_refl : zarith. Lemma Zle_trans_S : (n,m:Z)(Zle (Zs n) m)->(Zle n m). Proof. Intros n m H;Apply Zle_trans with m:=(Zs n); [ Apply Zle_n_Sn | Assumption ]. Qed. Lemma Zle_Sn_n : (n:Z)~(Zle (Zs n) n). Proof. Intros n; Apply Zgt_not_le; Apply Zgt_Sn_n. Qed. Lemma Zlt_n_Sn : (n:Z)(Zlt n (Zs n)). Proof. Intro n; Apply Zgt_lt; Apply Zgt_Sn_n. Qed. Lemma Zlt_S : (n,m:Z)(Zlt n m)->(Zlt n (Zs m)). Intros n m H;Apply Zgt_lt; Apply Zgt_trans with m:=m; [ Apply Zgt_Sn_n | Apply Zlt_gt; Assumption ]. Qed. Lemma Zlt_n_S : (n,m:Z)(Zlt n m)->(Zlt (Zs n) (Zs m)). Proof. Intros n m H;Apply Zgt_lt;Apply Zgt_n_S;Apply Zlt_gt; Assumption. Qed. Lemma Zlt_S_n : (n,m:Z)(Zlt (Zs n) (Zs m))->(Zlt n m). Proof. Intros n m H;Apply Zgt_lt;Apply Zgt_S_n;Apply Zlt_gt; Assumption. Qed. Lemma Zlt_pred : (n,p:Z)(Zlt (Zs n) p)->(Zlt n (Zpred p)). Proof. Intros n p H;Apply Zlt_S_n; Rewrite <- Zs_pred; Assumption. Qed. Lemma Zlt_pred_n_n : (n:Z)(Zlt (Zpred n) n). Proof. Intros n; Apply Zlt_S_n; Rewrite <- Zs_pred; Apply Zlt_n_Sn. Qed. Lemma Zlt_le_S : (n,p:Z)(Zlt n p)->(Zle (Zs n) p). Proof. Intros n p H; Apply Zgt_le_S; Apply Zlt_gt; Assumption. Qed. Lemma Zlt_n_Sm_le : (n,m:Z)(Zlt n (Zs m))->(Zle n m). Proof. Intros n m H; Apply Zgt_S_le; Apply Zlt_gt; Assumption. Qed. Lemma Zle_lt_n_Sm : (n,m:Z)(Zle n m)->(Zlt n (Zs m)). Proof. Intros n m H; Apply Zgt_lt; Apply Zle_gt_S; Assumption. Qed. Lemma Zle_le_S : (x,y:Z)(Zle x y)->(Zle x (Zs y)). Proof. Intros. Apply Zle_trans with y; Trivial with zarith. Qed. Hints Resolve Zle_le_S : zarith. (** Compatibility of multiplication by a positive wrt to order *) V7only [Set Implicit Arguments.]. Lemma Zle_Zmult_pos_right : (a,b,c : Z) (Zle a b) -> (Zle ZERO c) -> (Zle (Zmult a c) (Zmult b c)). Proof. Intros; NewDestruct c. Do 2 Rewrite Zero_mult_right; Assumption. Rewrite (Zmult_sym a); Rewrite (Zmult_sym b). Unfold Zle; Rewrite Zcompare_Zmult_compatible; Assumption. Unfold Zle in H0; Contradiction H0; Reflexivity. Qed. Lemma Zle_Zmult_pos_left : (a,b,c : Z) (Zle a b) -> (Zle ZERO c) -> (Zle (Zmult c a) (Zmult c b)). Proof. Intros a b c H1 H2; Rewrite (Zmult_sym c a);Rewrite (Zmult_sym c b). Apply Zle_Zmult_pos_right; Trivial. Qed. Lemma Zlt_Zmult_right : (x,y,z:Z)`z>0` -> `x < y` -> `x*z < y*z`. Proof. Intros; NewDestruct z. Contradiction (Zgt_antirefl `0`). Rewrite (Zmult_sym x); Rewrite (Zmult_sym y). Unfold Zlt; Rewrite Zcompare_Zmult_compatible; Assumption. Discriminate H. Qed. Lemma Zle_Zmult_right : (x,y,z:Z)`z>0` -> `x <= y` -> `x*z <= y*z`. Proof. Intros x y z Hz Hxy. Elim (Zle_lt_or_eq x y Hxy). Intros; Apply Zlt_le_weak. Apply Zlt_Zmult_right; Trivial. Intros; Apply Zle_refl. Rewrite H; Trivial. Qed. Lemma Zgt_Zmult_right : (x,y,z:Z)`z>0` -> `x > y` -> `x*z > y*z`. Proof. Intros; Apply Zlt_gt; Apply Zlt_Zmult_right; [ Assumption | Apply Zgt_lt ; Assumption ]. Qed. Lemma Zlt_Zmult_left : (x,y,z:Z)`z>0` -> `x < y` -> `z*x < z*y`. Proof. Intros; Rewrite (Zmult_sym z x); Rewrite (Zmult_sym z y); Apply Zlt_Zmult_right; Assumption. Qed. Lemma Zgt_Zmult_left : (x,y,z:Z)`z>0` -> `x > y` -> `z*x > z*y`. Proof. Intros; Rewrite (Zmult_sym z x); Rewrite (Zmult_sym z y); Apply Zgt_Zmult_right; Assumption. Qed. Lemma Zge_Zmult_pos_right : (a,b,c : Z) (Zge a b) -> (Zge c ZERO) -> (Zge (Zmult a c) (Zmult b c)). Proof. Intros a b c H1 H2; Apply Zle_ge. Apply Zle_Zmult_pos_right; Apply Zge_le; Trivial. Qed. Lemma Zge_Zmult_pos_left : (a,b,c : Z) (Zge a b) -> (Zge c ZERO) -> (Zge (Zmult c a) (Zmult c b)). Proof. Intros a b c H1 H2; Apply Zle_ge. Apply Zle_Zmult_pos_left; Apply Zge_le; Trivial. Qed. Lemma Zge_Zmult_pos_compat : (a,b,c,d : Z) (Zge a c) -> (Zge b d) -> (Zge c ZERO) -> (Zge d ZERO) -> (Zge (Zmult a b) (Zmult c d)). Proof. Intros a b c d H0 H1 H2 H3. Apply Zge_trans with (Zmult a d). Apply Zge_Zmult_pos_left; Trivial. Apply Zge_trans with c; Trivial. Apply Zge_Zmult_pos_right; Trivial. Qed. (** Simplification of multiplication by a positive wrt to being positive *) Lemma Zlt_Zmult_right2 : (x,y,z:Z)`z>0` -> `x*z < y*z` -> `x < y`. Proof. Intros; NewDestruct z. Contradiction (Zgt_antirefl `0`). Rewrite (Zmult_sym x) in H0; Rewrite (Zmult_sym y) in H0. Unfold Zlt in H0; Rewrite Zcompare_Zmult_compatible in H0; Assumption. Discriminate H. Qed. Lemma Zle_Zmult_right2 : (x,y,z:Z)`z>0` -> `x*z <= y*z` -> `x <= y`. Proof. Intros x y z Hz Hxy. Elim (Zle_lt_or_eq `x*z` `y*z` Hxy). Intros; Apply Zlt_le_weak. Apply Zlt_Zmult_right2 with z; Trivial. Intros; Apply Zle_refl. Apply Zmult_reg_right with z. Intro. Rewrite H0 in Hz. Contradiction (Zgt_antirefl `0`). Assumption. Qed. V7only [Unset Implicit Arguments.]. (** Compatibility of multiplication by a positive wrt to being positive *) Theorem Zle_ZERO_mult : (x,y:Z) (Zle ZERO x) -> (Zle ZERO y) -> (Zle ZERO (Zmult x y)). Proof. Intros x y; Case x. Intros; Rewrite Zero_mult_left; Trivial. Intros p H1; Unfold Zle. Pattern 2 ZERO ; Rewrite <- (Zero_mult_right (POS p)). Rewrite Zcompare_Zmult_compatible; Trivial. Intros p H1 H2; Absurd (Zgt ZERO (NEG p)); Trivial. Unfold Zgt; Simpl; Auto with zarith. Qed. Lemma Zgt_ZERO_mult: (a,b:Z) (Zgt a ZERO)->(Zgt b ZERO) ->(Zgt (Zmult a b) ZERO). Proof. Intros x y; Case x. Intros H; Discriminate H. Intros p H1; Unfold Zgt; Pattern 2 ZERO ; Rewrite <- (Zero_mult_right (POS p)). Rewrite Zcompare_Zmult_compatible; Trivial. Intros p H; Discriminate H. Qed. Theorem Zle_mult: (x,y:Z) (Zgt x ZERO) -> (Zle ZERO y) -> (Zle ZERO (Zmult y x)). Proof. Intros x y H1 H2; Apply Zle_ZERO_mult; Trivial. Apply Zlt_le_weak; Apply Zgt_lt; Trivial. Qed. (** Simplification of multiplication by a positive wrt to being positive *) Theorem Zmult_le: (x,y:Z) (Zgt x ZERO) -> (Zle ZERO (Zmult y x)) -> (Zle ZERO y). Proof. Intros x y; Case x; [ Simpl; Unfold Zgt ; Simpl; Intros H; Discriminate H | Intros p H1; Unfold Zle; Rewrite -> Zmult_sym; Pattern 1 ZERO ; Rewrite <- (Zero_mult_right (POS p)); Rewrite Zcompare_Zmult_compatible; Auto with arith | Intros p; Unfold Zgt ; Simpl; Intros H; Discriminate H]. Qed. Theorem Zmult_lt: (x,y:Z) (Zgt x ZERO) -> (Zlt ZERO (Zmult y x)) -> (Zlt ZERO y). Proof. Intros x y; Case x; [ Simpl; Unfold Zgt ; Simpl; Intros H; Discriminate H | Intros p H1; Unfold Zlt; Rewrite -> Zmult_sym; Pattern 1 ZERO ; Rewrite <- (Zero_mult_right (POS p)); Rewrite Zcompare_Zmult_compatible; Auto with arith | Intros p; Unfold Zgt ; Simpl; Intros H; Discriminate H]. Qed. Theorem Zmult_gt: (x,y:Z) (Zgt x ZERO) -> (Zgt (Zmult x y) ZERO) -> (Zgt y ZERO). Proof. Intros x y; Case x. Intros H; Discriminate H. Intros p H1; Unfold Zgt. Pattern 1 ZERO ; Rewrite <- (Zero_mult_right (POS p)). Rewrite Zcompare_Zmult_compatible; Trivial. Intros p H; Discriminate H. Qed. (** Equivalence between inequalities (used in contrib/graph) *) Lemma Zle_plus_swap : (x,y,z:Z) (Zle (Zplus x z) y) <-> (Zle x (Zminus y z)). Proof. Intros. Split. Intro. Rewrite <- (Zero_right x). Rewrite <- (Zplus_inverse_r z). Rewrite Zplus_assoc_l. Exact (Zle_reg_r ? ? ? H). Intro. Rewrite <- (Zero_right y). Rewrite <- (Zplus_inverse_l z). Rewrite Zplus_assoc_l. Apply Zle_reg_r. Assumption. Qed. Lemma Zge_iff_le : (x,y:Z) (Zge x y) <-> (Zle y x). Proof. Intros. Split. Intro. Apply Zge_le. Assumption. Intro. Apply Zle_ge. Assumption. Qed. Lemma Zlt_plus_swap : (x,y,z:Z) (Zlt (Zplus x z) y) <-> (Zlt x (Zminus y z)). Proof. Intros. Split. Intro. Unfold Zminus. Rewrite Zplus_sym. Rewrite <- (Zero_left x). Rewrite <- (Zplus_inverse_l z). Rewrite Zplus_assoc_r. Apply Zlt_reg_l. Rewrite Zplus_sym. Assumption. Intro. Rewrite Zplus_sym. Rewrite <- (Zero_left y). Rewrite <- (Zplus_inverse_r z). Rewrite Zplus_assoc_r. Apply Zlt_reg_l. Rewrite Zplus_sym. Assumption. Qed. Lemma Zgt_iff_lt : (x,y:Z) (Zgt x y) <-> (Zlt y x). Proof. Intros. Split. Intro. Apply Zgt_lt. Assumption. Intro. Apply Zlt_gt. Assumption. Qed. Lemma Zeq_plus_swap : (x,y,z:Z) (Zplus x z)=y <-> x=(Zminus y z). Proof. Intros. Split. Intro. Apply Zplus_minus. Symmetry. Rewrite Zplus_sym. Assumption. Intro. Rewrite H. Unfold Zminus. Rewrite Zplus_assoc_r. Rewrite Zplus_inverse_l. Apply Zero_right. Qed. (** Reverting [x ?= y] to trichotomy *) Lemma rename : (A:Set)(P:A->Prop)(x:A) ((y:A)(x=y)->(P y)) -> (P x). Proof. Auto with arith. Qed. Theorem Zcompare_elim : (c1,c2,c3:Prop)(x,y:Z) ((x=y) -> c1) ->((Zlt x y) -> c2) ->((Zgt x y)-> c3) -> Cases (Zcompare x y) of EGAL => c1 | INFERIEUR => c2 | SUPERIEUR => c3 end. Proof. Intros. Apply rename with x:=(Zcompare x y); Intro r; Elim r; [ Intro; Apply H; Apply (Zcompare_EGAL_eq x y); Assumption | Unfold Zlt in H0; Assumption | Unfold Zgt in H1; Assumption ]. Qed. Lemma Zcompare_eq_case : (c1,c2,c3:Prop)(x,y:Z) c1 -> x=y -> Cases (Zcompare x y) of EGAL => c1 | INFERIEUR => c2 | SUPERIEUR => c3 end. Proof. Intros. Rewrite H0; Rewrite (Zcompare_x_x). Assumption. Qed. (** Decompose an egality between two [?=] relations into 3 implications *) Theorem Zcompare_egal_dec : (x1,y1,x2,y2:Z) ((Zlt x1 y1)->(Zlt x2 y2)) ->((Zcompare x1 y1)=EGAL -> (Zcompare x2 y2)=EGAL) ->((Zgt x1 y1)->(Zgt x2 y2))->(Zcompare x1 y1)=(Zcompare x2 y2). Proof. Intros x1 y1 x2 y2. Unfold Zgt; Unfold Zlt; Case (Zcompare x1 y1); Case (Zcompare x2 y2); Auto with arith; Symmetry; Auto with arith. Qed. (** Relating [x ?= y] to [Zle], [Zlt], [Zge] or [Zgt] *) Lemma Zle_Zcompare : (x,y:Z)(Zle x y) -> Cases (Zcompare x y) of EGAL => True | INFERIEUR => True | SUPERIEUR => False end. Proof. Intros x y; Unfold Zle; Elim (Zcompare x y); Auto with arith. Qed. Lemma Zlt_Zcompare : (x,y:Z)(Zlt x y) -> Cases (Zcompare x y) of EGAL => False | INFERIEUR => True | SUPERIEUR => False end. Proof. Intros x y; Unfold Zlt; Elim (Zcompare x y); Intros; Discriminate Orelse Trivial with arith. Qed. Lemma Zge_Zcompare : (x,y:Z)(Zge x y)-> Cases (Zcompare x y) of EGAL => True | INFERIEUR => False | SUPERIEUR => True end. Proof. Intros x y; Unfold Zge; Elim (Zcompare x y); Auto with arith. Qed. Lemma Zgt_Zcompare : (x,y:Z)(Zgt x y) -> Cases (Zcompare x y) of EGAL => False | INFERIEUR => False | SUPERIEUR => True end. Proof. Intros x y; Unfold Zgt; Elim (Zcompare x y); Intros; Discriminate Orelse Trivial with arith. Qed.