(* -*- coding: utf-8 -*- *) (************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* Nat ---- | ^ | | | v Pos ---------> Z | | ^ | v | ----> N ----- >> *) Lemma nat_N_Z n : Z.of_N (N.of_nat n) = Z.of_nat n. Proof. now destruct n. Qed. Lemma N_nat_Z n : Z.of_nat (N.to_nat n) = Z.of_N n. Proof. destruct n; trivial. simpl. destruct (Pos2Nat.is_succ p) as (m,H). rewrite H. simpl. f_equal. now apply SuccNat2Pos.inv. Qed. Lemma positive_nat_Z p : Z.of_nat (Pos.to_nat p) = Zpos p. Proof. destruct (Pos2Nat.is_succ p) as (n,H). rewrite H. simpl. f_equal. now apply SuccNat2Pos.inv. Qed. Lemma positive_N_Z p : Z.of_N (Npos p) = Zpos p. Proof. reflexivity. Qed. Lemma positive_N_nat p : N.to_nat (Npos p) = Pos.to_nat p. Proof. reflexivity. Qed. Lemma positive_nat_N p : N.of_nat (Pos.to_nat p) = Npos p. Proof. destruct (Pos2Nat.is_succ p) as (n,H). rewrite H. simpl. f_equal. now apply SuccNat2Pos.inv. Qed. Lemma Z_N_nat n : N.to_nat (Z.to_N n) = Z.to_nat n. Proof. now destruct n. Qed. Lemma Z_nat_N n : N.of_nat (Z.to_nat n) = Z.to_N n. Proof. destruct n; simpl; trivial. apply positive_nat_N. Qed. Lemma Zabs_N_nat n : N.to_nat (Z.abs_N n) = Z.abs_nat n. Proof. now destruct n. Qed. Lemma Zabs_nat_N n : N.of_nat (Z.abs_nat n) = Z.abs_N n. Proof. destruct n; simpl; trivial; apply positive_nat_N. Qed. (** * Conversions between [Z] and [N] *) Module N2Z. (** [Z.of_N] is a bijection between [N] and non-negative [Z], with [Z.to_N] (or [Z.abs_N]) as reciprocal. See [Z2N.id] below for the dual equation. *) Lemma id n : Z.to_N (Z.of_N n) = n. Proof. now destruct n. Qed. (** [Z.of_N] is hence injective *) Lemma inj n m : Z.of_N n = Z.of_N m -> n = m. Proof. destruct n, m; simpl; congruence. Qed. Lemma inj_iff n m : Z.of_N n = Z.of_N m <-> n = m. Proof. split. apply inj. intros; now f_equal. Qed. (** [Z.of_N] produce non-negative integers *) Lemma is_nonneg n : 0 <= Z.of_N n. Proof. now destruct n. Qed. (** [Z.of_N], basic equations *) Lemma inj_0 : Z.of_N 0 = 0. Proof. reflexivity. Qed. Lemma inj_pos p : Z.of_N (Npos p) = Zpos p. Proof. reflexivity. Qed. (** [Z.of_N] and usual operations. *) Lemma inj_compare n m : (Z.of_N n ?= Z.of_N m) = (n ?= m)%N. Proof. now destruct n, m. Qed. Lemma inj_le n m : (n<=m)%N <-> Z.of_N n <= Z.of_N m. Proof. unfold Z.le. now rewrite inj_compare. Qed. Lemma inj_lt n m : (n Z.of_N n < Z.of_N m. Proof. unfold Z.lt. now rewrite inj_compare. Qed. Lemma inj_ge n m : (n>=m)%N <-> Z.of_N n >= Z.of_N m. Proof. unfold Z.ge. now rewrite inj_compare. Qed. Lemma inj_gt n m : (n>m)%N <-> Z.of_N n > Z.of_N m. Proof. unfold Z.gt. now rewrite inj_compare. Qed. Lemma inj_abs_N z : Z.of_N (Z.abs_N z) = Z.abs z. Proof. now destruct z. Qed. Lemma inj_add n m : Z.of_N (n+m) = Z.of_N n + Z.of_N m. Proof. now destruct n, m. Qed. Lemma inj_mul n m : Z.of_N (n*m) = Z.of_N n * Z.of_N m. Proof. now destruct n, m. Qed. Lemma inj_sub_max n m : Z.of_N (n-m) = Z.max 0 (Z.of_N n - Z.of_N m). Proof. destruct n as [|n], m as [|m]; simpl; trivial. rewrite Z.pos_sub_spec, Pos.compare_sub_mask. unfold Pos.sub. now destruct (Pos.sub_mask n m). Qed. Lemma inj_sub n m : (m<=n)%N -> Z.of_N (n-m) = Z.of_N n - Z.of_N m. Proof. intros H. rewrite inj_sub_max. unfold N.le in H. rewrite N.compare_antisym, <- inj_compare, Z.compare_sub in H. destruct (Z.of_N n - Z.of_N m); trivial; now destruct H. Qed. Lemma inj_succ n : Z.of_N (N.succ n) = Z.succ (Z.of_N n). Proof. destruct n. trivial. simpl. now rewrite Pos.add_1_r. Qed. Lemma inj_pred_max n : Z.of_N (N.pred n) = Z.max 0 (Z.pred (Z.of_N n)). Proof. unfold Z.pred. now rewrite N.pred_sub, inj_sub_max. Qed. Lemma inj_pred n : (0 Z.of_N (N.pred n) = Z.pred (Z.of_N n). Proof. intros H. unfold Z.pred. rewrite N.pred_sub, inj_sub; trivial. now apply N.le_succ_l in H. Qed. Lemma inj_min n m : Z.of_N (N.min n m) = Z.min (Z.of_N n) (Z.of_N m). Proof. unfold Z.min, N.min. rewrite inj_compare. now case N.compare. Qed. Lemma inj_max n m : Z.of_N (N.max n m) = Z.max (Z.of_N n) (Z.of_N m). Proof. unfold Z.max, N.max. rewrite inj_compare. case N.compare_spec; intros; subst; trivial. Qed. Lemma inj_div n m : Z.of_N (n/m) = Z.of_N n / Z.of_N m. Proof. destruct m as [|m]. now destruct n. apply Z.div_unique_pos with (Z.of_N (n mod (Npos m))). split. apply is_nonneg. apply inj_lt. now apply N.mod_lt. rewrite <- inj_mul, <- inj_add. f_equal. now apply N.div_mod. Qed. Lemma inj_mod n m : (m<>0)%N -> Z.of_N (n mod m) = (Z.of_N n) mod (Z.of_N m). Proof. intros Hm. apply Z.mod_unique_pos with (Z.of_N (n / m)). split. apply is_nonneg. apply inj_lt. now apply N.mod_lt. rewrite <- inj_mul, <- inj_add. f_equal. now apply N.div_mod. Qed. Lemma inj_quot n m : Z.of_N (n/m) = Z.of_N n ÷ Z.of_N m. Proof. destruct m. - now destruct n. - rewrite Z.quot_div_nonneg, inj_div; trivial. apply is_nonneg. easy. Qed. Lemma inj_rem n m : Z.of_N (n mod m) = Z.rem (Z.of_N n) (Z.of_N m). Proof. destruct m. - now destruct n. - rewrite Z.rem_mod_nonneg, inj_mod; trivial. easy. apply is_nonneg. easy. Qed. Lemma inj_div2 n : Z.of_N (N.div2 n) = Z.div2 (Z.of_N n). Proof. destruct n as [|p]; trivial. now destruct p. Qed. Lemma inj_quot2 n : Z.of_N (N.div2 n) = Z.quot2 (Z.of_N n). Proof. destruct n as [|p]; trivial. now destruct p. Qed. Lemma inj_pow n m : Z.of_N (n^m) = (Z.of_N n)^(Z.of_N m). Proof. destruct n, m; trivial. now rewrite Z.pow_0_l. apply Pos2Z.inj_pow. Qed. Lemma inj_testbit a n : Z.testbit (Z.of_N a) (Z.of_N n) = N.testbit a n. Proof. apply Z.testbit_of_N. Qed. End N2Z. Module Z2N. (** [Z.to_N] is a bijection between non-negative [Z] and [N], with [Pos.of_N] as reciprocal. See [N2Z.id] above for the dual equation. *) Lemma id n : 0<=n -> Z.of_N (Z.to_N n) = n. Proof. destruct n; (now destruct 1) || trivial. Qed. (** [Z.to_N] is hence injective for non-negative integers. *) Lemma inj n m : 0<=n -> 0<=m -> Z.to_N n = Z.to_N m -> n = m. Proof. intros. rewrite <- (id n), <- (id m) by trivial. now f_equal. Qed. Lemma inj_iff n m : 0<=n -> 0<=m -> (Z.to_N n = Z.to_N m <-> n = m). Proof. intros. split. now apply inj. intros; now subst. Qed. (** [Z.to_N], basic equations *) Lemma inj_0 : Z.to_N 0 = 0%N. Proof. reflexivity. Qed. Lemma inj_pos n : Z.to_N (Zpos n) = Npos n. Proof. reflexivity. Qed. Lemma inj_neg n : Z.to_N (Zneg n) = 0%N. Proof. reflexivity. Qed. (** [Z.to_N] and operations *) Lemma inj_add n m : 0<=n -> 0<=m -> Z.to_N (n+m) = (Z.to_N n + Z.to_N m)%N. Proof. destruct n, m; trivial; (now destruct 1) || (now destruct 2). Qed. Lemma inj_mul n m : 0<=n -> 0<=m -> Z.to_N (n*m) = (Z.to_N n * Z.to_N m)%N. Proof. destruct n, m; trivial; (now destruct 1) || (now destruct 2). Qed. Lemma inj_succ n : 0<=n -> Z.to_N (Z.succ n) = N.succ (Z.to_N n). Proof. unfold Z.succ. intros. rewrite inj_add by easy. apply N.add_1_r. Qed. Lemma inj_sub n m : 0<=m -> Z.to_N (n - m) = (Z.to_N n - Z.to_N m)%N. Proof. destruct n as [|n|n], m as [|m|m]; trivial; try (now destruct 1). intros _. simpl. rewrite Z.pos_sub_spec, Pos.compare_sub_mask. unfold Pos.sub. now destruct (Pos.sub_mask n m). Qed. Lemma inj_pred n : Z.to_N (Z.pred n) = N.pred (Z.to_N n). Proof. unfold Z.pred. rewrite <- N.sub_1_r. now apply (inj_sub n 1). Qed. Lemma inj_compare n m : 0<=n -> 0<=m -> (Z.to_N n ?= Z.to_N m)%N = (n ?= m). Proof. intros Hn Hm. now rewrite <- N2Z.inj_compare, !id. Qed. Lemma inj_le n m : 0<=n -> 0<=m -> (n<=m <-> (Z.to_N n <= Z.to_N m)%N). Proof. intros Hn Hm. unfold Z.le, N.le. now rewrite inj_compare. Qed. Lemma inj_lt n m : 0<=n -> 0<=m -> (n (Z.to_N n < Z.to_N m)%N). Proof. intros Hn Hm. unfold Z.lt, N.lt. now rewrite inj_compare. Qed. Lemma inj_min n m : Z.to_N (Z.min n m) = N.min (Z.to_N n) (Z.to_N m). Proof. destruct n, m; simpl; trivial; unfold Z.min, N.min; simpl; now case Pos.compare. Qed. Lemma inj_max n m : Z.to_N (Z.max n m) = N.max (Z.to_N n) (Z.to_N m). Proof. destruct n, m; simpl; trivial; unfold Z.max, N.max; simpl. case Pos.compare_spec; intros; subst; trivial. now case Pos.compare. Qed. Lemma inj_div n m : 0<=n -> 0<=m -> Z.to_N (n/m) = (Z.to_N n / Z.to_N m)%N. Proof. destruct n, m; trivial; intros Hn Hm; (now destruct Hn) || (now destruct Hm) || clear. simpl. rewrite <- (N2Z.id (_ / _)). f_equal. now rewrite N2Z.inj_div. Qed. Lemma inj_mod n m : 0<=n -> 0 Z.to_N (n mod m) = ((Z.to_N n) mod (Z.to_N m))%N. Proof. destruct n, m; trivial; intros Hn Hm; (now destruct Hn) || (now destruct Hm) || clear. simpl. rewrite <- (N2Z.id (_ mod _)). f_equal. now rewrite N2Z.inj_mod. Qed. Lemma inj_quot n m : 0<=n -> 0<=m -> Z.to_N (n÷m) = (Z.to_N n / Z.to_N m)%N. Proof. destruct m. - now destruct n. - intros. now rewrite Z.quot_div_nonneg, inj_div. - now destruct 2. Qed. Lemma inj_rem n m :0<=n -> 0<=m -> Z.to_N (Z.rem n m) = ((Z.to_N n) mod (Z.to_N m))%N. Proof. destruct m. - now destruct n. - intros. now rewrite Z.rem_mod_nonneg, inj_mod. - now destruct 2. Qed. Lemma inj_div2 n : Z.to_N (Z.div2 n) = N.div2 (Z.to_N n). Proof. destruct n as [|p|p]; trivial. now destruct p. Qed. Lemma inj_quot2 n : Z.to_N (Z.quot2 n) = N.div2 (Z.to_N n). Proof. destruct n as [|p|p]; trivial; now destruct p. Qed. Lemma inj_pow n m : 0<=n -> 0<=m -> Z.to_N (n^m) = ((Z.to_N n)^(Z.to_N m))%N. Proof. destruct m. - trivial. - intros. now rewrite <- (N2Z.id (_ ^ _)), N2Z.inj_pow, id. - now destruct 2. Qed. Lemma inj_testbit a n : 0<=n -> Z.testbit (Z.of_N a) n = N.testbit a (Z.to_N n). Proof. apply Z.testbit_of_N'. Qed. End Z2N. Module Zabs2N. (** Results about [Z.abs_N], converting absolute values of [Z] integers to [N]. *) Lemma abs_N_spec n : Z.abs_N n = Z.to_N (Z.abs n). Proof. now destruct n. Qed. Lemma abs_N_nonneg n : 0<=n -> Z.abs_N n = Z.to_N n. Proof. destruct n; trivial; now destruct 1. Qed. Lemma id_abs n : Z.of_N (Z.abs_N n) = Z.abs n. Proof. now destruct n. Qed. Lemma id n : Z.abs_N (Z.of_N n) = n. Proof. now destruct n. Qed. (** [Z.abs_N], basic equations *) Lemma inj_0 : Z.abs_N 0 = 0%N. Proof. reflexivity. Qed. Lemma inj_pos p : Z.abs_N (Zpos p) = Npos p. Proof. reflexivity. Qed. Lemma inj_neg p : Z.abs_N (Zneg p) = Npos p. Proof. reflexivity. Qed. (** [Z.abs_N] and usual operations, with non-negative integers *) Lemma inj_opp n : Z.abs_N (-n) = Z.abs_N n. Proof. now destruct n. Qed. Lemma inj_succ n : 0<=n -> Z.abs_N (Z.succ n) = N.succ (Z.abs_N n). Proof. intros. rewrite !abs_N_nonneg; trivial. now apply Z2N.inj_succ. now apply Z.le_le_succ_r. Qed. Lemma inj_add n m : 0<=n -> 0<=m -> Z.abs_N (n+m) = (Z.abs_N n + Z.abs_N m)%N. Proof. intros. rewrite !abs_N_nonneg; trivial. now apply Z2N.inj_add. now apply Z.add_nonneg_nonneg. Qed. Lemma inj_mul n m : Z.abs_N (n*m) = (Z.abs_N n * Z.abs_N m)%N. Proof. now destruct n, m. Qed. Lemma inj_sub n m : 0<=m<=n -> Z.abs_N (n-m) = (Z.abs_N n - Z.abs_N m)%N. Proof. intros (Hn,H). rewrite !abs_N_nonneg; trivial. now apply Z2N.inj_sub. Z.order. now apply Z.le_0_sub. Qed. Lemma inj_pred n : 0 Z.abs_N (Z.pred n) = N.pred (Z.abs_N n). Proof. intros. rewrite !abs_N_nonneg. now apply Z2N.inj_pred. Z.order. apply Z.lt_succ_r. now rewrite Z.succ_pred. Qed. Lemma inj_compare n m : 0<=n -> 0<=m -> (Z.abs_N n ?= Z.abs_N m)%N = (n ?= m). Proof. intros. rewrite !abs_N_nonneg by trivial. now apply Z2N.inj_compare. Qed. Lemma inj_le n m : 0<=n -> 0<=m -> (n<=m <-> (Z.abs_N n <= Z.abs_N m)%N). Proof. intros Hn Hm. unfold Z.le, N.le. now rewrite inj_compare. Qed. Lemma inj_lt n m : 0<=n -> 0<=m -> (n (Z.abs_N n < Z.abs_N m)%N). Proof. intros Hn Hm. unfold Z.lt, N.lt. now rewrite inj_compare. Qed. Lemma inj_min n m : 0<=n -> 0<=m -> Z.abs_N (Z.min n m) = N.min (Z.abs_N n) (Z.abs_N m). Proof. intros. rewrite !abs_N_nonneg; trivial. now apply Z2N.inj_min. now apply Z.min_glb. Qed. Lemma inj_max n m : 0<=n -> 0<=m -> Z.abs_N (Z.max n m) = N.max (Z.abs_N n) (Z.abs_N m). Proof. intros. rewrite !abs_N_nonneg; trivial. now apply Z2N.inj_max. transitivity n; trivial. apply Z.le_max_l. Qed. Lemma inj_quot n m : Z.abs_N (n÷m) = ((Z.abs_N n) / (Z.abs_N m))%N. Proof. assert (forall p q, Z.abs_N (Zpos p ÷ Zpos q) = (Npos p / Npos q)%N). intros. rewrite abs_N_nonneg. now apply Z2N.inj_quot. now apply Z.quot_pos. destruct n, m; trivial; simpl. - trivial. - now rewrite <- Pos2Z.opp_pos, Z.quot_opp_r, inj_opp. - now rewrite <- Pos2Z.opp_pos, Z.quot_opp_l, inj_opp. - now rewrite <- 2 Pos2Z.opp_pos, Z.quot_opp_opp. Qed. Lemma inj_rem n m : Z.abs_N (Z.rem n m) = ((Z.abs_N n) mod (Z.abs_N m))%N. Proof. assert (forall p q, Z.abs_N (Z.rem (Zpos p) (Zpos q)) = ((Npos p) mod (Npos q))%N). intros. rewrite abs_N_nonneg. now apply Z2N.inj_rem. now apply Z.rem_nonneg. destruct n, m; trivial; simpl. - trivial. - now rewrite <- Pos2Z.opp_pos, Z.rem_opp_r. - now rewrite <- Pos2Z.opp_pos, Z.rem_opp_l, inj_opp. - now rewrite <- 2 Pos2Z.opp_pos, Z.rem_opp_opp, inj_opp. Qed. Lemma inj_pow n m : 0<=m -> Z.abs_N (n^m) = ((Z.abs_N n)^(Z.abs_N m))%N. Proof. intros Hm. rewrite abs_N_spec, Z.abs_pow, Z2N.inj_pow, <- abs_N_spec; trivial. f_equal. symmetry; now apply abs_N_nonneg. apply Z.abs_nonneg. Qed. (** [Z.abs_N] and usual operations, statements with [Z.abs] *) Lemma inj_succ_abs n : Z.abs_N (Z.succ (Z.abs n)) = N.succ (Z.abs_N n). Proof. destruct n; simpl; trivial; now rewrite Pos.add_1_r. Qed. Lemma inj_add_abs n m : Z.abs_N (Z.abs n + Z.abs m) = (Z.abs_N n + Z.abs_N m)%N. Proof. now destruct n, m. Qed. Lemma inj_mul_abs n m : Z.abs_N (Z.abs n * Z.abs m) = (Z.abs_N n * Z.abs_N m)%N. Proof. now destruct n, m. Qed. End Zabs2N. (** * Conversions between [Z] and [nat] *) Module Nat2Z. (** [Z.of_nat], basic equations *) Lemma inj_0 : Z.of_nat 0 = 0. Proof. reflexivity. Qed. Lemma inj_succ n : Z.of_nat (S n) = Z.succ (Z.of_nat n). Proof. destruct n. trivial. simpl. apply Pos2Z.inj_succ. Qed. (** [Z.of_N] produce non-negative integers *) Lemma is_nonneg n : 0 <= Z.of_nat n. Proof. now induction n. Qed. (** [Z.of_nat] is a bijection between [nat] and non-negative [Z], with [Z.to_nat] (or [Z.abs_nat]) as reciprocal. See [Z2Nat.id] below for the dual equation. *) Lemma id n : Z.to_nat (Z.of_nat n) = n. Proof. now rewrite <- nat_N_Z, <- Z_N_nat, N2Z.id, Nat2N.id. Qed. (** [Z.of_nat] is hence injective *) Lemma inj n m : Z.of_nat n = Z.of_nat m -> n = m. Proof. intros H. now rewrite <- (id n), <- (id m), H. Qed. Lemma inj_iff n m : Z.of_nat n = Z.of_nat m <-> n = m. Proof. split. apply inj. intros; now f_equal. Qed. (** [Z.of_nat] and usual operations *) Lemma inj_compare n m : (Z.of_nat n ?= Z.of_nat m) = (n ?= m)%nat. Proof. now rewrite <-!nat_N_Z, N2Z.inj_compare, <- Nat2N.inj_compare. Qed. Lemma inj_le n m : (n<=m)%nat <-> Z.of_nat n <= Z.of_nat m. Proof. unfold Z.le. now rewrite inj_compare, nat_compare_le. Qed. Lemma inj_lt n m : (n Z.of_nat n < Z.of_nat m. Proof. unfold Z.lt. now rewrite inj_compare, nat_compare_lt. Qed. Lemma inj_ge n m : (n>=m)%nat <-> Z.of_nat n >= Z.of_nat m. Proof. unfold Z.ge. now rewrite inj_compare, nat_compare_ge. Qed. Lemma inj_gt n m : (n>m)%nat <-> Z.of_nat n > Z.of_nat m. Proof. unfold Z.gt. now rewrite inj_compare, nat_compare_gt. Qed. Lemma inj_abs_nat z : Z.of_nat (Z.abs_nat z) = Z.abs z. Proof. destruct z; simpl; trivial; destruct (Pos2Nat.is_succ p) as (n,H); rewrite H; simpl; f_equal; now apply SuccNat2Pos.inv. Qed. Lemma inj_add n m : Z.of_nat (n+m) = Z.of_nat n + Z.of_nat m. Proof. now rewrite <- !nat_N_Z, Nat2N.inj_add, N2Z.inj_add. Qed. Lemma inj_mul n m : Z.of_nat (n*m) = Z.of_nat n * Z.of_nat m. Proof. now rewrite <- !nat_N_Z, Nat2N.inj_mul, N2Z.inj_mul. Qed. Lemma inj_sub_max n m : Z.of_nat (n-m) = Z.max 0 (Z.of_nat n - Z.of_nat m). Proof. now rewrite <- !nat_N_Z, Nat2N.inj_sub, N2Z.inj_sub_max. Qed. Lemma inj_sub n m : (m<=n)%nat -> Z.of_nat (n-m) = Z.of_nat n - Z.of_nat m. Proof. rewrite nat_compare_le, Nat2N.inj_compare. intros. now rewrite <- !nat_N_Z, Nat2N.inj_sub, N2Z.inj_sub. Qed. Lemma inj_pred_max n : Z.of_nat (Nat.pred n) = Z.max 0 (Z.pred (Z.of_nat n)). Proof. now rewrite <- !nat_N_Z, Nat2N.inj_pred, N2Z.inj_pred_max. Qed. Lemma inj_pred n : (0 Z.of_nat (Nat.pred n) = Z.pred (Z.of_nat n). Proof. rewrite nat_compare_lt, Nat2N.inj_compare. intros. now rewrite <- !nat_N_Z, Nat2N.inj_pred, N2Z.inj_pred. Qed. Lemma inj_min n m : Z.of_nat (Nat.min n m) = Z.min (Z.of_nat n) (Z.of_nat m). Proof. now rewrite <- !nat_N_Z, Nat2N.inj_min, N2Z.inj_min. Qed. Lemma inj_max n m : Z.of_nat (Nat.max n m) = Z.max (Z.of_nat n) (Z.of_nat m). Proof. now rewrite <- !nat_N_Z, Nat2N.inj_max, N2Z.inj_max. Qed. End Nat2Z. Module Z2Nat. (** [Z.to_nat] is a bijection between non-negative [Z] and [nat], with [Pos.of_nat] as reciprocal. See [nat2Z.id] above for the dual equation. *) Lemma id n : 0<=n -> Z.of_nat (Z.to_nat n) = n. Proof. intros. now rewrite <- Z_N_nat, <- nat_N_Z, N2Nat.id, Z2N.id. Qed. (** [Z.to_nat] is hence injective for non-negative integers. *) Lemma inj n m : 0<=n -> 0<=m -> Z.to_nat n = Z.to_nat m -> n = m. Proof. intros. rewrite <- (id n), <- (id m) by trivial. now f_equal. Qed. Lemma inj_iff n m : 0<=n -> 0<=m -> (Z.to_nat n = Z.to_nat m <-> n = m). Proof. intros. split. now apply inj. intros; now subst. Qed. (** [Z.to_nat], basic equations *) Lemma inj_0 : Z.to_nat 0 = O. Proof. reflexivity. Qed. Lemma inj_pos n : Z.to_nat (Zpos n) = Pos.to_nat n. Proof. reflexivity. Qed. Lemma inj_neg n : Z.to_nat (Zneg n) = O. Proof. reflexivity. Qed. (** [Z.to_nat] and operations *) Lemma inj_add n m : 0<=n -> 0<=m -> Z.to_nat (n+m) = (Z.to_nat n + Z.to_nat m)%nat. Proof. intros. now rewrite <- !Z_N_nat, Z2N.inj_add, N2Nat.inj_add. Qed. Lemma inj_mul n m : 0<=n -> 0<=m -> Z.to_nat (n*m) = (Z.to_nat n * Z.to_nat m)%nat. Proof. intros. now rewrite <- !Z_N_nat, Z2N.inj_mul, N2Nat.inj_mul. Qed. Lemma inj_succ n : 0<=n -> Z.to_nat (Z.succ n) = S (Z.to_nat n). Proof. intros. now rewrite <- !Z_N_nat, Z2N.inj_succ, N2Nat.inj_succ. Qed. Lemma inj_sub n m : 0<=m -> Z.to_nat (n - m) = (Z.to_nat n - Z.to_nat m)%nat. Proof. intros. now rewrite <- !Z_N_nat, Z2N.inj_sub, N2Nat.inj_sub. Qed. Lemma inj_pred n : Z.to_nat (Z.pred n) = Nat.pred (Z.to_nat n). Proof. now rewrite <- !Z_N_nat, Z2N.inj_pred, N2Nat.inj_pred. Qed. Lemma inj_compare n m : 0<=n -> 0<=m -> (Z.to_nat n ?= Z.to_nat m)%nat = (n ?= m). Proof. intros Hn Hm. now rewrite <- Nat2Z.inj_compare, !id. Qed. Lemma inj_le n m : 0<=n -> 0<=m -> (n<=m <-> (Z.to_nat n <= Z.to_nat m)%nat). Proof. intros Hn Hm. unfold Z.le. now rewrite nat_compare_le, inj_compare. Qed. Lemma inj_lt n m : 0<=n -> 0<=m -> (n (Z.to_nat n < Z.to_nat m)%nat). Proof. intros Hn Hm. unfold Z.lt. now rewrite nat_compare_lt, inj_compare. Qed. Lemma inj_min n m : Z.to_nat (Z.min n m) = Nat.min (Z.to_nat n) (Z.to_nat m). Proof. now rewrite <- !Z_N_nat, Z2N.inj_min, N2Nat.inj_min. Qed. Lemma inj_max n m : Z.to_nat (Z.max n m) = Nat.max (Z.to_nat n) (Z.to_nat m). Proof. now rewrite <- !Z_N_nat, Z2N.inj_max, N2Nat.inj_max. Qed. End Z2Nat. Module Zabs2Nat. (** Results about [Z.abs_nat], converting absolute values of [Z] integers to [nat]. *) Lemma abs_nat_spec n : Z.abs_nat n = Z.to_nat (Z.abs n). Proof. now destruct n. Qed. Lemma abs_nat_nonneg n : 0<=n -> Z.abs_nat n = Z.to_nat n. Proof. destruct n; trivial; now destruct 1. Qed. Lemma id_abs n : Z.of_nat (Z.abs_nat n) = Z.abs n. Proof. rewrite <-Zabs_N_nat, N_nat_Z. apply Zabs2N.id_abs. Qed. Lemma id n : Z.abs_nat (Z.of_nat n) = n. Proof. now rewrite <-Zabs_N_nat, <-nat_N_Z, Zabs2N.id, Nat2N.id. Qed. (** [Z.abs_nat], basic equations *) Lemma inj_0 : Z.abs_nat 0 = 0%nat. Proof. reflexivity. Qed. Lemma inj_pos p : Z.abs_nat (Zpos p) = Pos.to_nat p. Proof. reflexivity. Qed. Lemma inj_neg p : Z.abs_nat (Zneg p) = Pos.to_nat p. Proof. reflexivity. Qed. (** [Z.abs_nat] and usual operations, with non-negative integers *) Lemma inj_succ n : 0<=n -> Z.abs_nat (Z.succ n) = S (Z.abs_nat n). Proof. intros. now rewrite <- !Zabs_N_nat, Zabs2N.inj_succ, N2Nat.inj_succ. Qed. Lemma inj_add n m : 0<=n -> 0<=m -> Z.abs_nat (n+m) = (Z.abs_nat n + Z.abs_nat m)%nat. Proof. intros. now rewrite <- !Zabs_N_nat, Zabs2N.inj_add, N2Nat.inj_add. Qed. Lemma inj_mul n m : Z.abs_nat (n*m) = (Z.abs_nat n * Z.abs_nat m)%nat. Proof. destruct n, m; simpl; trivial using Pos2Nat.inj_mul. Qed. Lemma inj_sub n m : 0<=m<=n -> Z.abs_nat (n-m) = (Z.abs_nat n - Z.abs_nat m)%nat. Proof. intros. now rewrite <- !Zabs_N_nat, Zabs2N.inj_sub, N2Nat.inj_sub. Qed. Lemma inj_pred n : 0 Z.abs_nat (Z.pred n) = Nat.pred (Z.abs_nat n). Proof. intros. now rewrite <- !Zabs_N_nat, Zabs2N.inj_pred, N2Nat.inj_pred. Qed. Lemma inj_compare n m : 0<=n -> 0<=m -> (Z.abs_nat n ?= Z.abs_nat m)%nat = (n ?= m). Proof. intros. now rewrite <- !Zabs_N_nat, <- N2Nat.inj_compare, Zabs2N.inj_compare. Qed. Lemma inj_le n m : 0<=n -> 0<=m -> (n<=m <-> (Z.abs_nat n <= Z.abs_nat m)%nat). Proof. intros Hn Hm. unfold Z.le. now rewrite nat_compare_le, inj_compare. Qed. Lemma inj_lt n m : 0<=n -> 0<=m -> (n (Z.abs_nat n < Z.abs_nat m)%nat). Proof. intros Hn Hm. unfold Z.lt. now rewrite nat_compare_lt, inj_compare. Qed. Lemma inj_min n m : 0<=n -> 0<=m -> Z.abs_nat (Z.min n m) = Nat.min (Z.abs_nat n) (Z.abs_nat m). Proof. intros. now rewrite <- !Zabs_N_nat, Zabs2N.inj_min, N2Nat.inj_min. Qed. Lemma inj_max n m : 0<=n -> 0<=m -> Z.abs_nat (Z.max n m) = Nat.max (Z.abs_nat n) (Z.abs_nat m). Proof. intros. now rewrite <- !Zabs_N_nat, Zabs2N.inj_max, N2Nat.inj_max. Qed. (** [Z.abs_nat] and usual operations, statements with [Z.abs] *) Lemma inj_succ_abs n : Z.abs_nat (Z.succ (Z.abs n)) = S (Z.abs_nat n). Proof. now rewrite <- !Zabs_N_nat, Zabs2N.inj_succ_abs, N2Nat.inj_succ. Qed. Lemma inj_add_abs n m : Z.abs_nat (Z.abs n + Z.abs m) = (Z.abs_nat n + Z.abs_nat m)%nat. Proof. now rewrite <- !Zabs_N_nat, Zabs2N.inj_add_abs, N2Nat.inj_add. Qed. Lemma inj_mul_abs n m : Z.abs_nat (Z.abs n * Z.abs m) = (Z.abs_nat n * Z.abs_nat m)%nat. Proof. now rewrite <- !Zabs_N_nat, Zabs2N.inj_mul_abs, N2Nat.inj_mul. Qed. End Zabs2Nat. (** Compatibility *) Definition neq (x y:nat) := x <> y. Lemma inj_neq n m : neq n m -> Zne (Z.of_nat n) (Z.of_nat m). Proof. intros H H'. now apply H, Nat2Z.inj. Qed. Lemma Zpos_P_of_succ_nat n : Zpos (Pos.of_succ_nat n) = Z.succ (Z.of_nat n). Proof (Nat2Z.inj_succ n). (** For these one, used in omega, a Definition is necessary *) Definition inj_eq := (f_equal Z.of_nat). Definition inj_le n m := proj1 (Nat2Z.inj_le n m). Definition inj_lt n m := proj1 (Nat2Z.inj_lt n m). Definition inj_ge n m := proj1 (Nat2Z.inj_ge n m). Definition inj_gt n m := proj1 (Nat2Z.inj_gt n m). (** For the others, a Notation is fine *) Notation inj_0 := Nat2Z.inj_0 (only parsing). Notation inj_S := Nat2Z.inj_succ (only parsing). Notation inj_compare := Nat2Z.inj_compare (only parsing). Notation inj_eq_rev := Nat2Z.inj (only parsing). Notation inj_eq_iff := (fun n m => iff_sym (Nat2Z.inj_iff n m)) (only parsing). Notation inj_le_iff := Nat2Z.inj_le (only parsing). Notation inj_lt_iff := Nat2Z.inj_lt (only parsing). Notation inj_ge_iff := Nat2Z.inj_ge (only parsing). Notation inj_gt_iff := Nat2Z.inj_gt (only parsing). Notation inj_le_rev := (fun n m => proj2 (Nat2Z.inj_le n m)) (only parsing). Notation inj_lt_rev := (fun n m => proj2 (Nat2Z.inj_lt n m)) (only parsing). Notation inj_ge_rev := (fun n m => proj2 (Nat2Z.inj_ge n m)) (only parsing). Notation inj_gt_rev := (fun n m => proj2 (Nat2Z.inj_gt n m)) (only parsing). Notation inj_plus := Nat2Z.inj_add (only parsing). Notation inj_mult := Nat2Z.inj_mul (only parsing). Notation inj_minus1 := Nat2Z.inj_sub (only parsing). Notation inj_minus := Nat2Z.inj_sub_max (only parsing). Notation inj_min := Nat2Z.inj_min (only parsing). Notation inj_max := Nat2Z.inj_max (only parsing). Notation Z_of_nat_of_P := positive_nat_Z (only parsing). Notation Zpos_eq_Z_of_nat_o_nat_of_P := (fun p => eq_sym (positive_nat_Z p)) (only parsing). Notation Z_of_nat_of_N := N_nat_Z (only parsing). Notation Z_of_N_of_nat := nat_N_Z (only parsing). Notation Z_of_N_eq := (f_equal Z.of_N) (only parsing). Notation Z_of_N_eq_rev := N2Z.inj (only parsing). Notation Z_of_N_eq_iff := (fun n m => iff_sym (N2Z.inj_iff n m)) (only parsing). Notation Z_of_N_compare := N2Z.inj_compare (only parsing). Notation Z_of_N_le_iff := N2Z.inj_le (only parsing). Notation Z_of_N_lt_iff := N2Z.inj_lt (only parsing). Notation Z_of_N_ge_iff := N2Z.inj_ge (only parsing). Notation Z_of_N_gt_iff := N2Z.inj_gt (only parsing). Notation Z_of_N_le := (fun n m => proj1 (N2Z.inj_le n m)) (only parsing). Notation Z_of_N_lt := (fun n m => proj1 (N2Z.inj_lt n m)) (only parsing). Notation Z_of_N_ge := (fun n m => proj1 (N2Z.inj_ge n m)) (only parsing). Notation Z_of_N_gt := (fun n m => proj1 (N2Z.inj_gt n m)) (only parsing). Notation Z_of_N_le_rev := (fun n m => proj2 (N2Z.inj_le n m)) (only parsing). Notation Z_of_N_lt_rev := (fun n m => proj2 (N2Z.inj_lt n m)) (only parsing). Notation Z_of_N_ge_rev := (fun n m => proj2 (N2Z.inj_ge n m)) (only parsing). Notation Z_of_N_gt_rev := (fun n m => proj2 (N2Z.inj_gt n m)) (only parsing). Notation Z_of_N_pos := N2Z.inj_pos (only parsing). Notation Z_of_N_abs := N2Z.inj_abs_N (only parsing). Notation Z_of_N_le_0 := N2Z.is_nonneg (only parsing). Notation Z_of_N_plus := N2Z.inj_add (only parsing). Notation Z_of_N_mult := N2Z.inj_mul (only parsing). Notation Z_of_N_minus := N2Z.inj_sub_max (only parsing). Notation Z_of_N_succ := N2Z.inj_succ (only parsing). Notation Z_of_N_min := N2Z.inj_min (only parsing). Notation Z_of_N_max := N2Z.inj_max (only parsing). Notation Zabs_of_N := Zabs2N.id (only parsing). Notation Zabs_N_succ_abs := Zabs2N.inj_succ_abs (only parsing). Notation Zabs_N_succ := Zabs2N.inj_succ (only parsing). Notation Zabs_N_plus_abs := Zabs2N.inj_add_abs (only parsing). Notation Zabs_N_plus := Zabs2N.inj_add (only parsing). Notation Zabs_N_mult_abs := Zabs2N.inj_mul_abs (only parsing). Notation Zabs_N_mult := Zabs2N.inj_mul (only parsing). Theorem inj_minus2 : forall n m:nat, (m > n)%nat -> Z.of_nat (n - m) = 0. Proof. intros. rewrite not_le_minus_0; auto with arith. Qed.