(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* 0 (* 1 *) | xO q => Z.succ (log_inf q) (* 2n *) | xI q => Z.succ (log_inf q) (* 2n+1 *) end. Fixpoint log_sup (p:positive) : Z := match p with | xH => 0 (* 1 *) | xO n => Z.succ (log_sup n) (* 2n *) | xI n => Z.succ (Z.succ (log_inf n)) (* 2n+1 *) end. Hint Unfold log_inf log_sup. Lemma Psize_log_inf : forall p, Zpos (Pos.size p) = Z.succ (log_inf p). Proof. induction p; simpl; now rewrite ?Pos2Z.inj_succ, ?IHp. Qed. Lemma Zlog2_log_inf : forall p, Z.log2 (Zpos p) = log_inf p. Proof. unfold Z.log2. destruct p; simpl; trivial; apply Psize_log_inf. Qed. Lemma Zlog2_up_log_sup : forall p, Z.log2_up (Zpos p) = log_sup p. Proof. induction p; simpl log_sup. - change (Zpos p~1) with (2*(Zpos p)+1). rewrite Z.log2_up_succ_double, Zlog2_log_inf; try easy. unfold Z.succ. now rewrite !(Z.add_comm _ 1), Z.add_assoc. - change (Zpos p~0) with (2*Zpos p). now rewrite Z.log2_up_double, IHp. - reflexivity. Qed. (** Then we give the specifications of [log_inf] and [log_sup] and prove their validity *) Hint Resolve Z.le_trans: zarith. Theorem log_inf_correct : forall x:positive, 0 <= log_inf x /\ two_p (log_inf x) <= Zpos x < two_p (Z.succ (log_inf x)). Proof. simple induction x; intros; simpl; [ elim H; intros Hp HR; clear H; split; [ auto with zarith | rewrite two_p_S with (x := Z.succ (log_inf p)) by (apply Z.le_le_succ_r; trivial); rewrite two_p_S by trivial; rewrite two_p_S in HR by trivial; rewrite (BinInt.Pos2Z.inj_xI p); omega ] | elim H; intros Hp HR; clear H; split; [ auto with zarith | rewrite two_p_S with (x := Z.succ (log_inf p)) by (apply Z.le_le_succ_r; trivial); rewrite two_p_S by trivial; rewrite two_p_S in HR by trivial; rewrite (BinInt.Pos2Z.inj_xO p); omega ] | unfold two_power_pos; unfold shift_pos; simpl; omega ]. Qed. Definition log_inf_correct1 (p:positive) := proj1 (log_inf_correct p). Definition log_inf_correct2 (p:positive) := proj2 (log_inf_correct p). Opaque log_inf_correct1 log_inf_correct2. Hint Resolve log_inf_correct1 log_inf_correct2: zarith. Lemma log_sup_correct1 : forall p:positive, 0 <= log_sup p. Proof. simple induction p; intros; simpl; auto with zarith. Qed. (** For every [p], either [p] is a power of two and [(log_inf p)=(log_sup p)] either [(log_sup p)=(log_inf p)+1] *) Theorem log_sup_log_inf : forall p:positive, IF Zpos p = two_p (log_inf p) then Zpos p = two_p (log_sup p) else log_sup p = Z.succ (log_inf p). Proof. simple induction p; intros; [ elim H; right; simpl; rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0)); rewrite BinInt.Pos2Z.inj_xI; unfold Z.succ; omega | elim H; clear H; intro Hif; [ left; simpl; rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0)); rewrite (two_p_S (log_sup p0) (log_sup_correct1 p0)); rewrite <- (proj1 Hif); rewrite <- (proj2 Hif); auto | right; simpl; rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0)); rewrite BinInt.Pos2Z.inj_xO; unfold Z.succ; omega ] | left; auto ]. Qed. Theorem log_sup_correct2 : forall x:positive, two_p (Z.pred (log_sup x)) < Zpos x <= two_p (log_sup x). Proof. intro. elim (log_sup_log_inf x). (* x is a power of two and [log_sup = log_inf] *) intros [E1 E2]; rewrite E2. split; [ apply two_p_pred; apply log_sup_correct1 | apply Z.le_refl ]. intros [E1 E2]; rewrite E2. rewrite (Z.pred_succ (log_inf x)). generalize (log_inf_correct2 x); omega. Qed. Lemma log_inf_le_log_sup : forall p:positive, log_inf p <= log_sup p. Proof. simple induction p; simpl; intros; omega. Qed. Lemma log_sup_le_Slog_inf : forall p:positive, log_sup p <= Z.succ (log_inf p). Proof. simple induction p; simpl; intros; omega. Qed. (** Now it's possible to specify and build the [Log] rounded to the nearest *) Fixpoint log_near (x:positive) : Z := match x with | xH => 0 | xO xH => 1 | xI xH => 2 | xO y => Z.succ (log_near y) | xI y => Z.succ (log_near y) end. Theorem log_near_correct1 : forall p:positive, 0 <= log_near p. Proof. simple induction p; simpl; intros; [ elim p0; auto with zarith | elim p0; auto with zarith | trivial with zarith ]. intros; apply Z.le_le_succ_r. generalize H0; now elim p1. intros; apply Z.le_le_succ_r. generalize H0; now elim p1. Qed. Theorem log_near_correct2 : forall p:positive, log_near p = log_inf p \/ log_near p = log_sup p. Proof. simple induction p. intros p0 [Einf| Esup]. simpl. rewrite Einf. case p0; [ left | left | right ]; reflexivity. simpl; rewrite Esup. elim (log_sup_log_inf p0). generalize (log_inf_le_log_sup p0). generalize (log_sup_le_Slog_inf p0). case p0; auto with zarith. intros; omega. case p0; intros; auto with zarith. intros p0 [Einf| Esup]. simpl. repeat rewrite Einf. case p0; intros; auto with zarith. simpl. repeat rewrite Esup. case p0; intros; auto with zarith. auto. Qed. End Log_pos. Section divers. (** Number of significative digits. *) Definition N_digits (x:Z) := match x with | Zpos p => log_inf p | Zneg p => log_inf p | Z0 => 0 end. Lemma ZERO_le_N_digits : forall x:Z, 0 <= N_digits x. Proof. simple induction x; simpl; [ apply Z.le_refl | exact log_inf_correct1 | exact log_inf_correct1 ]. Qed. Lemma log_inf_shift_nat : forall n:nat, log_inf (shift_nat n 1) = Z.of_nat n. Proof. simple induction n; intros; [ try trivial | rewrite Nat2Z.inj_succ; rewrite <- H; reflexivity ]. Qed. Lemma log_sup_shift_nat : forall n:nat, log_sup (shift_nat n 1) = Z.of_nat n. Proof. simple induction n; intros; [ try trivial | rewrite Nat2Z.inj_succ; rewrite <- H; reflexivity ]. Qed. (** [Is_power p] means that p is a power of two *) Fixpoint Is_power (p:positive) : Prop := match p with | xH => True | xO q => Is_power q | xI q => False end. Lemma Is_power_correct : forall p:positive, Is_power p <-> (exists y : nat, p = shift_nat y 1). Proof. split; [ elim p; [ simpl; tauto | simpl; intros; generalize (H H0); intro H1; elim H1; intros y0 Hy0; exists (S y0); rewrite Hy0; reflexivity | intro; exists 0%nat; reflexivity ] | intros; elim H; intros; rewrite H0; elim x; intros; simpl; trivial ]. Qed. Lemma Is_power_or : forall p:positive, Is_power p \/ ~ Is_power p. Proof. simple induction p; [ intros; right; simpl; tauto | intros; elim H; [ intros; left; simpl; exact H0 | intros; right; simpl; exact H0 ] | left; simpl; trivial ]. Qed. End divers.