(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Ztestbit (Z_of_N a) n = N.testbit a (Zabs_N n). Proof. intros. now rewrite <- Ztestbit_of_N, Z_of_N_abs, Zabs_eq. Qed. Lemma Ztestbit_Zpos : forall a n, 0<=n -> Ztestbit (Zpos a) n = N.testbit (Npos a) (Zabs_N n). Proof. intros. now rewrite <- Ztestbit_of_N'. Qed. Lemma Ztestbit_Zneg : forall a n, 0<=n -> Ztestbit (Zneg a) n = negb (N.testbit (Pos.pred_N a) (Zabs_N n)). Proof. intros a n Hn. rewrite <- Ztestbit_of_N' by trivial. destruct n as [ |n|n]; [ | simpl; now destruct (Ppred_N a) | now destruct Hn]. unfold Ztestbit. replace (Z_of_N (Pos.pred_N a)) with (Zpred (Zpos a)) by (destruct a; trivial). now rewrite Zodd_bool_pred, <- Zodd_even_bool. Qed. (** Proofs of specifications *) Lemma Zdiv2_spec : forall a, Zdiv2 a = Zshiftr a 1. Proof. reflexivity. Qed. Lemma Ztestbit_0_l : forall n, Ztestbit 0 n = false. Proof. now destruct n. Qed. Lemma Ztestbit_neg_r : forall a n, n<0 -> Ztestbit a n = false. Proof. now destruct n. Qed. Lemma Ztestbit_odd_0 a : Ztestbit (2*a+1) 0 = true. Proof. now destruct a as [|a|[a|a|]]. Qed. Lemma Ztestbit_even_0 a : Ztestbit (2*a) 0 = false. Proof. now destruct a. Qed. Lemma Ztestbit_odd_succ a n : 0<=n -> Ztestbit (2*a+1) (Zsucc n) = Ztestbit a n. Proof. destruct n as [|n|n]; (now destruct 1) || intros _. destruct a as [|[a|a|]|[a|a|]]; simpl; trivial. now destruct a. unfold Ztestbit. rewrite <- Zpos_succ_morphism. destruct a as [|a|[a|a|]]; simpl; trivial; rewrite ?Pos.pred_N_succ; now destruct n. Qed. Lemma Ztestbit_even_succ a n : 0<=n -> Ztestbit (2*a) (Zsucc n) = Ztestbit a n. Proof. destruct n as [|n|n]; (now destruct 1) || intros _. destruct a as [|[a|a|]|[a|a|]]; simpl; trivial. now destruct a. unfold Ztestbit. rewrite <- Zpos_succ_morphism. destruct a as [|a|[a|a|]]; simpl; trivial; rewrite ?Pos.pred_N_succ; now destruct n. Qed. Lemma Ppred_div2_up : forall p, Pos.pred_N (Pos.div2_up p) = N.div2 (Pos.pred_N p). Proof. intros [p|p| ]; trivial. simpl. apply Pos.pred_N_succ. destruct p; simpl; trivial. Qed. Lemma Z_of_N_div2 : forall n, Z_of_N (N.div2 n) = Zdiv2 (Z_of_N n). Proof. intros [|p]; trivial. now destruct p. Qed. Lemma Z_of_N_quot2 : forall n, Z_of_N (N.div2 n) = Zquot2 (Z_of_N n). Proof. intros [|p]; trivial. now destruct p. Qed. (** Auxiliary results about right shift on positive numbers *) Lemma Ppred_Pshiftl_low : forall p n m, (m N.testbit (Pos.pred_N (Pos.shiftl p n)) m = true. Proof. induction n using N.peano_ind. now destruct m. intros m H. unfold Pos.shiftl. destruct n as [|n]; simpl in *. destruct m. now destruct p. elim (Pos.nlt_1_r _ H). rewrite Pos.iter_succ. simpl. set (u:=Pos.iter n xO p) in *; clearbody u. destruct m as [|m]. now destruct u. rewrite <- (IHn (Pos.pred_N m)). rewrite <- (N.testbit_odd_succ _ (Pos.pred_N m)). rewrite N.succ_pos_pred. now destruct u. apply N.le_0_l. apply N.succ_lt_mono. now rewrite N.succ_pos_pred. Qed. Lemma Ppred_Pshiftl_high : forall p n m, (n<=m)%N -> N.testbit (Pos.pred_N (Pos.shiftl p n)) m = N.testbit (N.shiftl (Pos.pred_N p) n) m. Proof. induction n using N.peano_ind; intros m H. unfold N.shiftl. simpl. now destruct (Pos.pred_N p). rewrite N.shiftl_succ_r. destruct n as [|n]. destruct m as [|m]. now destruct H. now destruct p. destruct m as [|m]. now destruct H. rewrite <- (N.succ_pos_pred m). rewrite N.double_spec, N.testbit_even_succ by apply N.le_0_l. rewrite <- IHn. rewrite N.testbit_succ_r_div2 by apply N.le_0_l. f_equal. simpl. rewrite Pos.iter_succ. now destruct (Pos.iter n xO p). apply N.succ_le_mono. now rewrite N.succ_pos_pred. Qed. (** Correctness proofs about [Zshiftr] and [Zshiftl] *) Lemma Zshiftr_spec_aux : forall a n m, 0<=n -> 0<=m -> Ztestbit (Zshiftr a n) m = Ztestbit a (m+n). Proof. intros a n m Hn Hm. unfold Zshiftr. destruct n as [ |n|n]; (now destruct Hn) || clear Hn; simpl. now rewrite Zplus_0_r. destruct a as [ |a|a]. (* a = 0 *) replace (iter_pos n _ Zdiv2 0) with 0 by (apply iter_pos_invariant; intros; subst; trivial). now rewrite 2 Ztestbit_0_l. (* a > 0 *) rewrite <- (Z_of_N_pos a) at 1. rewrite <- (iter_pos_swap_gen _ _ _ Ndiv2) by exact Z_of_N_div2. rewrite Ztestbit_Zpos, Ztestbit_of_N'; trivial. rewrite Zabs_N_plus; try easy. simpl Zabs_N. exact (N.shiftr_spec' (Npos a) (Npos n) (Zabs_N m)). now apply Zplus_le_0_compat. (* a < 0 *) rewrite <- (iter_pos_swap_gen _ _ _ Pdiv2_up) by trivial. rewrite 2 Ztestbit_Zneg; trivial. f_equal. rewrite Zabs_N_plus; try easy. simpl Zabs_N. rewrite (iter_pos_swap_gen _ _ _ _ Ndiv2) by exact Ppred_div2_up. exact (N.shiftr_spec' (Ppred_N a) (Npos n) (Zabs_N m)). now apply Zplus_le_0_compat. Qed. Lemma Zshiftl_spec_low : forall a n m, m Ztestbit (Zshiftl a n) m = false. Proof. intros a [ |n|n] [ |m|m] H; try easy; simpl Zshiftl. rewrite iter_nat_of_P. destruct (nat_of_P_is_S n) as (n' & ->). simpl. now destruct (iter_nat n' _ (Zmult 2) a). destruct a as [ |a|a]. (* a = 0 *) replace (iter_pos n _ (Zmult 2) 0) with 0 by (apply iter_pos_invariant; intros; subst; trivial). apply Ztestbit_0_l. (* a > 0 *) rewrite <- (iter_pos_swap_gen _ _ _ xO) by trivial. rewrite Ztestbit_Zpos by easy. exact (N.shiftl_spec_low (Npos a) (Npos n) (Npos m) H). (* a < 0 *) rewrite <- (iter_pos_swap_gen _ _ _ xO) by trivial. rewrite Ztestbit_Zneg by easy. now rewrite (Ppred_Pshiftl_low a (Npos n)). Qed. Lemma Zshiftl_spec_high : forall a n m, 0<=m -> n<=m -> Ztestbit (Zshiftl a n) m = Ztestbit a (m-n). Proof. intros a n m Hm H. destruct n as [ |n|n]. simpl. now rewrite Zminus_0_r. (* n > 0 *) destruct m as [ |m|m]; try (now destruct H). assert (0 <= Zpos m - Zpos n) by (now apply Zle_minus_le_0). assert (EQ : Zabs_N (Zpos m - Zpos n) = (Npos m - Npos n)%N). apply Z_of_N_eq_rev. rewrite Z_of_N_abs, Zabs_eq by trivial. now rewrite Z_of_N_minus, !Z_of_N_pos, Zmax_r. destruct a; unfold Zshiftl. (* ... a = 0 *) replace (iter_pos n _ (Zmult 2) 0) with 0 by (apply iter_pos_invariant; intros; subst; trivial). now rewrite 2 Ztestbit_0_l. (* ... a > 0 *) rewrite <- (iter_pos_swap_gen _ _ _ xO) by trivial. rewrite 2 Ztestbit_Zpos, EQ by easy. exact (N.shiftl_spec_high' (Npos p) (Npos n) (Npos m) H). (* ... a < 0 *) rewrite <- (iter_pos_swap_gen _ _ _ xO) by trivial. rewrite 2 Ztestbit_Zneg, EQ by easy. f_equal. simpl Zabs_N. rewrite <- N.shiftl_spec_high by easy. now apply (Ppred_Pshiftl_high p (Npos n)). (* n < 0 *) unfold Zminus. simpl. now apply (Zshiftr_spec_aux a (Zpos n) m). Qed. Lemma Zshiftr_spec : forall a n m, 0<=m -> Ztestbit (Zshiftr a n) m = Ztestbit a (m+n). Proof. intros a n m Hm. destruct (Zle_or_lt 0 n). now apply Zshiftr_spec_aux. destruct (Zle_or_lt (-n) m). unfold Zshiftr. rewrite (Zshiftl_spec_high a (-n) m); trivial. unfold Zminus. now rewrite Zopp_involutive. unfold Zshiftr. rewrite (Zshiftl_spec_low a (-n) m); trivial. rewrite Ztestbit_neg_r; trivial. now apply Zlt_plus_swap. Qed. (** Correctness proofs for bitwise operations *) Lemma Zor_spec : forall a b n, Ztestbit (Zor a b) n = Ztestbit a n || Ztestbit b n. Proof. intros a b n. destruct (Zle_or_lt 0 n) as [Hn|Hn]; [|now rewrite !Ztestbit_neg_r]. destruct a as [ |a|a], b as [ |b|b]; rewrite ?Ztestbit_0_l, ?orb_false_r; trivial; unfold Zor; rewrite ?Ztestbit_Zpos, ?Ztestbit_Zneg, ?Ppred_Nsucc by trivial. now rewrite <- N.lor_spec. now rewrite N.ldiff_spec, negb_andb, negb_involutive, orb_comm. now rewrite N.ldiff_spec, negb_andb, negb_involutive. now rewrite N.land_spec, negb_andb. Qed. Lemma Zand_spec : forall a b n, Ztestbit (Zand a b) n = Ztestbit a n && Ztestbit b n. Proof. intros a b n. destruct (Zle_or_lt 0 n) as [Hn|Hn]; [|now rewrite !Ztestbit_neg_r]. destruct a as [ |a|a], b as [ |b|b]; rewrite ?Ztestbit_0_l, ?andb_false_r; trivial; unfold Zand; rewrite ?Ztestbit_Zpos, ?Ztestbit_Zneg, ?Ztestbit_of_N', ?Ppred_Nsucc by trivial. now rewrite <- N.land_spec. now rewrite N.ldiff_spec. now rewrite N.ldiff_spec, andb_comm. now rewrite N.lor_spec, negb_orb. Qed. Lemma Zdiff_spec : forall a b n, Ztestbit (Zdiff a b) n = Ztestbit a n && negb (Ztestbit b n). Proof. intros a b n. destruct (Zle_or_lt 0 n) as [Hn|Hn]; [|now rewrite !Ztestbit_neg_r]. destruct a as [ |a|a], b as [ |b|b]; rewrite ?Ztestbit_0_l, ?andb_true_r; trivial; unfold Zdiff; rewrite ?Ztestbit_Zpos, ?Ztestbit_Zneg, ?Ztestbit_of_N', ?Ppred_Nsucc by trivial. now rewrite <- N.ldiff_spec. now rewrite N.land_spec, negb_involutive. now rewrite N.lor_spec, negb_orb. now rewrite N.ldiff_spec, negb_involutive, andb_comm. Qed. Lemma Zxor_spec : forall a b n, Ztestbit (Zxor a b) n = xorb (Ztestbit a n) (Ztestbit b n). Proof. intros a b n. destruct (Zle_or_lt 0 n) as [Hn|Hn]; [|now rewrite !Ztestbit_neg_r]. destruct a as [ |a|a], b as [ |b|b]; rewrite ?Ztestbit_0_l, ?xorb_false_l, ?xorb_false_r; trivial; unfold Zxor; rewrite ?Ztestbit_Zpos, ?Ztestbit_Zneg, ?Ztestbit_of_N', ?Ppred_Nsucc by trivial. now rewrite <- N.lxor_spec. now rewrite N.lxor_spec, negb_xorb_r. now rewrite N.lxor_spec, negb_xorb_l. now rewrite N.lxor_spec, xorb_negb_negb. Qed. (** An additionnal proof concerning [Pshiftl_nat], used in BigN *) Lemma Pshiftl_nat_Zpower : forall n p, Zpos (Pos.shiftl_nat p n) = Zpos p * 2 ^ Z_of_nat n. Proof. intros. rewrite Zmult_comm. induction n. simpl; auto. transitivity (2 * (2 ^ Z_of_nat n * Zpos p)). rewrite <- IHn. auto. rewrite Zmult_assoc. rewrite inj_S. rewrite <- Zpower_succ_r; auto with zarith. apply Zle_0_nat. Qed.