(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* 1%positive | xO a' => xO (floor_pos a') | xI b' => xO (floor_pos b') end. Definition floor (a:positive) := Zpos (floor_pos a). Lemma floor_gt0 : forall p:positive, floor p > 0. Proof. reflexivity. Qed. Lemma floor_ok : forall p:positive, floor p <= Zpos p < 2 * floor p. Proof. unfold floor. induction p; simpl. - rewrite !Pos2Z.inj_xI, (Pos2Z.inj_xO (xO _)), Pos2Z.inj_xO. omega. - rewrite (Pos2Z.inj_xO (xO _)), (Pos2Z.inj_xO p), Pos2Z.inj_xO. omega. - omega. Qed. (**********************************************************************) (** Two more induction principles over [Z]. *) Theorem Z_lt_abs_rec : forall P:Z -> Set, (forall n:Z, (forall m:Z, Z.abs m < Z.abs n -> P m) -> P n) -> forall n:Z, P n. Proof. intros P HP p. set (Q := fun z => 0 <= z -> P z * P (- z)). cut (Q (Z.abs p)); [ intros H | apply (Z_lt_rec Q); auto with zarith ]. elim (Zabs_dec p); intro eq; rewrite eq; elim H; auto with zarith. intros x H; subst Q. split; apply HP. rewrite Z.abs_eq; auto; intros. elim (H (Z.abs m)); intros; auto with zarith. elim (Zabs_dec m); intro eq; rewrite eq; trivial. rewrite Z.abs_neq, Z.opp_involutive; auto with zarith; intros. elim (H (Z.abs m)); intros; auto with zarith. elim (Zabs_dec m); intro eq; rewrite eq; trivial. Qed. Theorem Z_lt_abs_induction : forall P:Z -> Prop, (forall n:Z, (forall m:Z, Z.abs m < Z.abs n -> P m) -> P n) -> forall n:Z, P n. Proof. intros P HP p. set (Q := fun z => 0 <= z -> P z /\ P (- z)) in *. cut (Q (Z.abs p)); [ intros | apply (Z_lt_induction Q); auto with zarith ]. elim (Zabs_dec p); intro eq; rewrite eq; elim H; auto with zarith. unfold Q; clear Q; intros. split; apply HP. rewrite Z.abs_eq; auto; intros. elim (H (Z.abs m)); intros; auto with zarith. elim (Zabs_dec m); intro eq; rewrite eq; trivial. rewrite Z.abs_neq, Z.opp_involutive; auto with zarith; intros. elim (H (Z.abs m)); intros; auto with zarith. elim (Zabs_dec m); intro eq; rewrite eq; trivial. Qed. (** To do case analysis over the sign of [z] *) Lemma Zcase_sign : forall (n:Z) (P:Prop), (n = 0 -> P) -> (n > 0 -> P) -> (n < 0 -> P) -> P. Proof. intros x P Hzero Hpos Hneg. destruct x; [apply Hzero|apply Hpos|apply Hneg]; easy. Qed. Lemma sqr_pos n : n * n >= 0. Proof. Z.swap_greater. apply Z.square_nonneg. Qed. (**********************************************************************) (** A list length in Z, tail recursive. *) Require Import List. Fixpoint Zlength_aux (acc:Z) (A:Type) (l:list A) : Z := match l with | nil => acc | _ :: l => Zlength_aux (Z.succ acc) A l end. Definition Zlength := Zlength_aux 0. Arguments Zlength [A] l. Section Zlength_properties. Variable A : Type. Implicit Type l : list A. Lemma Zlength_correct l : Zlength l = Z.of_nat (length l). Proof. assert (H : forall l acc, Zlength_aux acc A l = acc + Z.of_nat (length l)). clear l. induction l. auto with zarith. intros. simpl length; simpl Zlength_aux. rewrite IHl, Nat2Z.inj_succ; auto with zarith. unfold Zlength. now rewrite H. Qed. Lemma Zlength_nil : Zlength (A:=A) nil = 0. Proof. reflexivity. Qed. Lemma Zlength_cons (x:A) l : Zlength (x :: l) = Z.succ (Zlength l). Proof. intros. now rewrite !Zlength_correct, <- Nat2Z.inj_succ. Qed. Lemma Zlength_nil_inv l : Zlength l = 0 -> l = nil. Proof. rewrite Zlength_correct. destruct l as [|x l]; auto. now rewrite <- Nat2Z.inj_0, Nat2Z.inj_iff. Qed. End Zlength_properties. Arguments Zlength_correct [A] l. Arguments Zlength_cons [A] x l. Arguments Zlength_nil_inv [A] l _.