(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* true | _ => false end. Definition Zneq_bool (x y:Z) := match x ?= y with | Eq => false | _ => true end. (** Properties in term of [if ... then ... else ...] *) Lemma Zle_cases : forall n m:Z, if Zle_bool n m then (n <= m) else (n > m). Proof. intros x y; unfold Zle_bool, Zle, Zgt in |- *. case (x ?= y); auto; discriminate. Qed. Lemma Zlt_cases : forall n m:Z, if Zlt_bool n m then (n < m) else (n >= m). Proof. intros x y; unfold Zlt_bool, Zlt, Zge in |- *. case (x ?= y); auto; discriminate. Qed. Lemma Zge_cases : forall n m:Z, if Zge_bool n m then (n >= m) else (n < m). Proof. intros x y; unfold Zge_bool, Zge, Zlt in |- *. case (x ?= y); auto; discriminate. Qed. Lemma Zgt_cases : forall n m:Z, if Zgt_bool n m then (n > m) else (n <= m). Proof. intros x y; unfold Zgt_bool, Zgt, Zle in |- *. case (x ?= y); auto; discriminate. Qed. (** Lemmas on [Zle_bool] used in contrib/graphs *) Lemma Zle_bool_imp_le : forall n m:Z, Zle_bool n m = true -> (n <= m). Proof. unfold Zle_bool, Zle in |- *. intros x y. unfold not in |- *. case (x ?= y); intros; discriminate. Qed. Lemma Zle_imp_le_bool : forall n m:Z, (n <= m) -> Zle_bool n m = true. Proof. unfold Zle, Zle_bool in |- *. intros x y. case (x ?= y); trivial. intro. elim (H (refl_equal _)). Qed. Lemma Zle_bool_refl : forall n:Z, Zle_bool n n = true. Proof. intro. apply Zle_imp_le_bool. apply Zeq_le. reflexivity. Qed. Lemma Zle_bool_antisym : forall n m:Z, Zle_bool n m = true -> Zle_bool m n = true -> n = m. Proof. intros. apply Zle_antisym. apply Zle_bool_imp_le. assumption. apply Zle_bool_imp_le. assumption. Qed. Lemma Zle_bool_trans : forall n m p:Z, Zle_bool n m = true -> Zle_bool m p = true -> Zle_bool n p = true. Proof. intros x y z; intros. apply Zle_imp_le_bool. apply Zle_trans with (m := y). apply Zle_bool_imp_le. assumption. apply Zle_bool_imp_le. assumption. Qed. Definition Zle_bool_total : forall x y:Z, {Zle_bool x y = true} + {Zle_bool y x = true}. Proof. intros x y; intros. unfold Zle_bool in |- *. cut ((x ?= y) = Gt <-> (y ?= x) = Lt). case (x ?= y). left. reflexivity. left. reflexivity. right. rewrite (proj1 H (refl_equal _)). reflexivity. apply Zcompare_Gt_Lt_antisym. Defined. Lemma Zle_bool_plus_mono : forall n m p q:Z, Zle_bool n m = true -> Zle_bool p q = true -> Zle_bool (n + p) (m + q) = true. Proof. intros. apply Zle_imp_le_bool. apply Zplus_le_compat. apply Zle_bool_imp_le. assumption. apply Zle_bool_imp_le. assumption. Qed. Lemma Zone_pos : Zle_bool 1 0 = false. Proof. reflexivity. Qed. Lemma Zone_min_pos : forall n:Z, Zle_bool n 0 = false -> Zle_bool 1 n = true. Proof. intros x; intros. apply Zle_imp_le_bool. change (Zsucc 0 <= x) in |- *. apply Zgt_le_succ. generalize H. unfold Zle_bool, Zgt in |- *. case (x ?= 0). intro H0. discriminate H0. intro H0. discriminate H0. reflexivity. Qed. (** Properties in term of [iff] *) Lemma Zle_is_le_bool : forall n m:Z, (n <= m) <-> Zle_bool n m = true. Proof. intros. split. intro. apply Zle_imp_le_bool. assumption. intro. apply Zle_bool_imp_le. assumption. Qed. Lemma Zge_is_le_bool : forall n m:Z, (n >= m) <-> Zle_bool m n = true. Proof. intros. split. intro. apply Zle_imp_le_bool. apply Zge_le. assumption. intro. apply Zle_ge. apply Zle_bool_imp_le. assumption. Qed. Lemma Zlt_is_lt_bool : forall n m:Z, (n < m) <-> Zlt_bool n m = true. Proof. intros n m; unfold Zlt_bool, Zlt. destruct (n ?= m); simpl; split; now intro. Qed. Lemma Zgt_is_gt_bool : forall n m:Z, (n > m) <-> Zgt_bool n m = true. Proof. intros n m; unfold Zgt_bool, Zgt. destruct (n ?= m); simpl; split; now intro. Qed. Lemma Zlt_is_le_bool : forall n m:Z, (n < m) <-> Zle_bool n (m - 1) = true. Proof. intros x y. split. intro. apply Zle_imp_le_bool. apply Zlt_succ_le. rewrite (Zsucc_pred y) in H. assumption. intro. rewrite (Zsucc_pred y). apply Zle_lt_succ. apply Zle_bool_imp_le. assumption. Qed. Lemma Zgt_is_le_bool : forall n m:Z, (n > m) <-> Zle_bool m (n - 1) = true. Proof. intros x y. apply iff_trans with (y < x). split. exact (Zgt_lt x y). exact (Zlt_gt y x). exact (Zlt_is_le_bool y x). Qed. Lemma Zeq_is_eq_bool : forall x y, x = y <-> Zeq_bool x y = true. Proof. intros; unfold Zeq_bool. generalize (Zcompare_Eq_iff_eq x y); destruct Zcompare; intuition; try discriminate. Qed. Lemma Zeq_bool_eq : forall x y, Zeq_bool x y = true -> x = y. Proof. intros x y H; apply <- Zeq_is_eq_bool; auto. Qed. Lemma Zeq_bool_neq : forall x y, Zeq_bool x y = false -> x <> y. Proof. unfold Zeq_bool; red ; intros; subst. rewrite Zcompare_refl in H. discriminate. Qed. Lemma Zeq_bool_if : forall x y, if Zeq_bool x y then x=y else x<>y. Proof. intros. generalize (Zeq_bool_eq x y)(Zeq_bool_neq x y). destruct Zeq_bool; auto. Qed.