(* -*- coding: utf-8 -*- *) (************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* Prop) (n:Z), (n >= 0 -> P n) -> (n <= 0 -> P (- n)) -> P (Z.abs n). Proof. intros. apply Z.abs_case_strong; Z.swap_greater; trivial. intros x y Hx; now subst. Qed. Theorem Zabs_intro : forall P (n:Z), P (- n) -> P n -> P (Z.abs n). Proof. now destruct n. Qed. Definition Zabs_dec : forall x:Z, {x = Z.abs x} + {x = - Z.abs x}. Proof. destruct x; auto. Defined. Lemma Zabs_spec x : 0 <= x /\ Z.abs x = x \/ 0 > x /\ Z.abs x = -x. Proof. Z.swap_greater. apply Z.abs_spec. Qed. (** * Some results about the sign function. *) Notation Zsgn_Zmult := Z.sgn_mul (only parsing). Notation Zsgn_Zopp := Z.sgn_opp (only parsing). Notation Zsgn_pos := Z.sgn_pos_iff (only parsing). Notation Zsgn_neg := Z.sgn_neg_iff (only parsing). Notation Zsgn_null := Z.sgn_null_iff (only parsing). (** A characterization of the sign function: *) Lemma Zsgn_spec x : 0 < x /\ Z.sgn x = 1 \/ 0 = x /\ Z.sgn x = 0 \/ 0 > x /\ Z.sgn x = -1. Proof. intros. Z.swap_greater. apply Z.sgn_spec. Qed. (** Compatibility *) Notation inj_Zabs_nat := Zabs2Nat.id_abs (only parsing). Notation Zabs_nat_Z_of_nat := Zabs2Nat.id (only parsing). Notation Zabs_nat_mult := Zabs2Nat.inj_mul (only parsing). Notation Zabs_nat_Zsucc := Zabs2Nat.inj_succ (only parsing). Notation Zabs_nat_Zplus := Zabs2Nat.inj_add (only parsing). Notation Zabs_nat_Zminus := (fun n m => Zabs2Nat.inj_sub m n) (only parsing). Notation Zabs_nat_compare := Zabs2Nat.inj_compare (only parsing). Lemma Zabs_nat_le n m : 0 <= n <= m -> (Z.abs_nat n <= Z.abs_nat m)%nat. Proof. intros (H,H'). apply Zabs2Nat.inj_le; trivial. now transitivity n. Qed. Lemma Zabs_nat_lt n m : 0 <= n < m -> (Z.abs_nat n < Z.abs_nat m)%nat. Proof. intros (H,H'). apply Zabs2Nat.inj_lt; trivial. transitivity n; trivial. now apply Z.lt_le_incl. Qed.