(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* P) -> ((n ?= m) = Lt -> P) -> ((n ?= m) = Gt -> P) -> P. Proof. intros H1 H2 H3. destruct (n ?= m); auto. Defined. Lemma Zcompare_rec (P:Set) (n m:Z) : ((n ?= m) = Eq -> P) -> ((n ?= m) = Lt -> P) -> ((n ?= m) = Gt -> P) -> P. Proof. apply Zcompare_rect. Defined. Notation Z_eq_dec := Z.eq_dec (compat "8.6"). Section decidability. Variables x y : Z. (** * Decidability of order on binary integers *) Definition Z_lt_dec : {x < y} + {~ x < y}. Proof. unfold Z.lt; case Z.compare; (now left) || (now right). Defined. Definition Z_le_dec : {x <= y} + {~ x <= y}. Proof. unfold Z.le; case Z.compare; (now left) || (right; tauto). Defined. Definition Z_gt_dec : {x > y} + {~ x > y}. Proof. unfold Z.gt; case Z.compare; (now left) || (now right). Defined. Definition Z_ge_dec : {x >= y} + {~ x >= y}. Proof. unfold Z.ge; case Z.compare; (now left) || (right; tauto). Defined. Definition Z_lt_ge_dec : {x < y} + {x >= y}. Proof. exact Z_lt_dec. Defined. Lemma Z_lt_le_dec : {x < y} + {y <= x}. Proof. elim Z_lt_ge_dec. * now left. * right; now apply Z.ge_le. Defined. Definition Z_le_gt_dec : {x <= y} + {x > y}. Proof. elim Z_le_dec; auto with arith. intro. right. Z.swap_greater. now apply Z.nle_gt. Defined. Definition Z_gt_le_dec : {x > y} + {x <= y}. Proof. exact Z_gt_dec. Defined. Definition Z_ge_lt_dec : {x >= y} + {x < y}. Proof. elim Z_ge_dec; auto with arith. intro. right. Z.swap_greater. now apply Z.lt_nge. Defined. Definition Z_le_lt_eq_dec : x <= y -> {x < y} + {x = y}. Proof. intro H. apply Zcompare_rec with (n := x) (m := y). intro. right. elim (Z.compare_eq_iff x y); auto with arith. intro. left. elim (Z.compare_eq_iff x y); auto with arith. intro H1. absurd (x > y); auto with arith. Defined. End decidability. (** * Cotransitivity of order on binary integers *) Lemma Zlt_cotrans : forall n m:Z, n < m -> forall p:Z, {n < p} + {p < m}. Proof. intros x y H z. case (Z_lt_ge_dec x z). intro. left. assumption. intro. right. apply Z.le_lt_trans with (m := x). apply Z.ge_le. assumption. assumption. Defined. Lemma Zlt_cotrans_pos : forall n m:Z, 0 < n + m -> {0 < n} + {0 < m}. Proof. intros x y H. case (Zlt_cotrans 0 (x + y) H x). - now left. - right. apply Z.add_lt_mono_l with (p := x). now rewrite Z.add_0_r. Defined. Lemma Zlt_cotrans_neg : forall n m:Z, n + m < 0 -> {n < 0} + {m < 0}. Proof. intros x y H; case (Zlt_cotrans (x + y) 0 H x); intro Hxy; [ right; apply Z.add_lt_mono_l with (p := x); rewrite Z.add_0_r | left ]; assumption. Defined. Lemma not_Zeq_inf : forall n m:Z, n <> m -> {n < m} + {m < n}. Proof. intros x y H. case Z_lt_ge_dec with x y. intro. left. assumption. intro H0. generalize (Z.ge_le _ _ H0). intro. case (Z_le_lt_eq_dec _ _ H1). intro. right. assumption. intro. apply False_rec. apply H. symmetry . assumption. Defined. Lemma Z_dec : forall n m:Z, {n < m} + {n > m} + {n = m}. Proof. intros x y. case (Z_lt_ge_dec x y). intro H. left. left. assumption. intro H. generalize (Z.ge_le _ _ H). intro H0. case (Z_le_lt_eq_dec y x H0). intro H1. left. right. apply Z.lt_gt. assumption. intro. right. symmetry . assumption. Defined. Lemma Z_dec' : forall n m:Z, {n < m} + {m < n} + {n = m}. Proof. intros x y. case (Z.eq_dec x y); intro H; [ right; assumption | left; apply (not_Zeq_inf _ _ H) ]. Defined. (* begin hide *) (* To deprecate ? *) Corollary Z_zerop : forall x:Z, {x = 0} + {x <> 0}. Proof. exact (fun x:Z => Z.eq_dec x 0). Defined. Corollary Z_notzerop : forall (x:Z), {x <> 0} + {x = 0}. Proof (fun x => sumbool_not _ _ (Z_zerop x)). Corollary Z_noteq_dec : forall (x y:Z), {x <> y} + {x = y}. Proof (fun x y => sumbool_not _ _ (Z.eq_dec x y)). (* end hide *)