(* -*- coding: utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Gt. Definition ge x y := (x ?= y) <> Lt. Infix "<=" := le : Z_scope. Infix "<" := lt : Z_scope. Infix ">=" := ge : Z_scope. Infix ">" := gt : Z_scope. Notation "x <= y <= z" := (x <= y /\ y <= z) : Z_scope. Notation "x <= y < z" := (x <= y /\ y < z) : Z_scope. Notation "x < y < z" := (x < y /\ y < z) : Z_scope. Notation "x < y <= z" := (x < y /\ y <= z) : Z_scope. Definition divide x y := exists z, y = z*x. Notation "( x | y )" := (divide x y) (at level 0). Definition Even a := exists b, a = 2*b. Definition Odd a := exists b, a = 2*b+1. (** * Decidability of equality. *) Definition eq_dec (x y : Z) : {x = y} + {x <> y}. Proof. decide equality; apply Pos.eq_dec. Defined. (** * Properties of [pos_sub] *) (** [pos_sub] can be written in term of positive comparison and subtraction (cf. earlier definition of addition of Z) *) Lemma pos_sub_spec p q : pos_sub p q = match (p ?= q)%positive with | Eq => 0 | Lt => neg (q - p) | Gt => pos (p - q) end. Proof. revert q. induction p; destruct q; simpl; trivial; rewrite ?Pos.compare_xI_xI, ?Pos.compare_xO_xI, ?Pos.compare_xI_xO, ?Pos.compare_xO_xO, IHp; simpl; case Pos.compare_spec; intros; simpl; trivial; (now rewrite Pos.sub_xI_xI) || (now rewrite Pos.sub_xO_xO) || (now rewrite Pos.sub_xO_xI) || (now rewrite Pos.sub_xI_xO) || subst; unfold Pos.sub; simpl; now rewrite Pos.sub_mask_diag. Qed. Lemma pos_sub_discr p q : match pos_sub p q with | Z0 => p = q | pos k => p = q + k | neg k => q = p + k end%positive. Proof. rewrite pos_sub_spec. case Pos.compare_spec; auto; intros; now rewrite Pos.add_comm, Pos.sub_add. Qed. (** Particular cases of the previous result *) Lemma pos_sub_diag p : pos_sub p p = 0. Proof. now rewrite pos_sub_spec, Pos.compare_refl. Qed. Lemma pos_sub_lt p q : (p < q)%positive -> pos_sub p q = neg (q - p). Proof. intros H. now rewrite pos_sub_spec, H. Qed. Lemma pos_sub_gt p q : (q < p)%positive -> pos_sub p q = pos (p - q). Proof. intros H. now rewrite pos_sub_spec, Pos.compare_antisym, H. Qed. (** The opposite of [pos_sub] is [pos_sub] with reversed arguments *) Lemma pos_sub_opp p q : - pos_sub p q = pos_sub q p. Proof. revert q; induction p; destruct q; simpl; trivial; rewrite <- IHp; now destruct pos_sub. Qed. (** In the following module, we group results that are needed now to prove specifications of operations, but will also be provided later by the generic functor of properties. *) Module Import Private_BootStrap. (** * Properties of addition *) (** ** Zero is neutral for addition *) Lemma add_0_r n : n + 0 = n. Proof. now destruct n. Qed. (** ** Addition is commutative *) Lemma add_comm n m : n + m = m + n. Proof. destruct n, m; simpl; trivial; now rewrite Pos.add_comm. Qed. (** ** Opposite distributes over addition *) Lemma opp_add_distr n m : - (n + m) = - n + - m. Proof. destruct n, m; simpl; trivial using pos_sub_opp. Qed. (** ** Opposite is injective *) Lemma opp_inj n m : -n = -m -> n = m. Proof. destruct n, m; simpl; intros H; destr_eq H; now f_equal. Qed. (** ** Addition is associative *) Lemma pos_sub_add p q r : pos_sub (p + q) r = pos p + pos_sub q r. Proof. simpl. rewrite !pos_sub_spec. case (Pos.compare_spec q r); intros E0. - (* q = r *) subst. assert (H := Pos.lt_add_r r p). rewrite Pos.add_comm in H. apply Pos.lt_gt in H. now rewrite H, Pos.add_sub. - (* q < r *) rewrite pos_sub_spec. assert (Hr : (r = (r-q)+q)%positive) by (now rewrite Pos.sub_add). rewrite Hr at 1. rewrite Pos.add_compare_mono_r. case Pos.compare_spec; intros E1; trivial; f_equal. rewrite Pos.add_comm. apply Pos.sub_add_distr. rewrite Hr, Pos.add_comm. now apply Pos.add_lt_mono_r. symmetry. apply Pos.sub_sub_distr; trivial. - (* r < q *) assert (LT : (r < p + q)%positive). { apply Pos.lt_trans with q; trivial. rewrite Pos.add_comm. apply Pos.lt_add_r. } apply Pos.lt_gt in LT. rewrite LT. f_equal. symmetry. now apply Pos.add_sub_assoc. Qed. Lemma add_assoc n m p : n + (m + p) = n + m + p. Proof. assert (AUX : forall x y z, pos x + (y + z) = pos x + y + z). { intros x [|y|y] [|z|z]; rewrite ?add_0_r; trivial. - simpl. now rewrite Pos.add_assoc. - simpl (_ + neg _). symmetry. apply pos_sub_add. - simpl (neg _ + _); simpl (_ + neg _). now rewrite (add_comm _ (pos _)), <- 2 pos_sub_add, Pos.add_comm. - apply opp_inj. rewrite !opp_add_distr. simpl opp. simpl (neg _ + _); simpl (_ + neg _). rewrite add_comm, Pos.add_comm. apply pos_sub_add. } destruct n. - trivial. - apply AUX. - apply opp_inj. rewrite !opp_add_distr. simpl opp. apply AUX. Qed. (** ** Subtraction and successor *) Lemma sub_succ_l n m : succ n - m = succ (n - m). Proof. unfold sub, succ. now rewrite <- 2 add_assoc, (add_comm 1). Qed. (** ** Opposite is inverse for addition *) Lemma add_opp_diag_r n : n + - n = 0. Proof. destruct n; simpl; trivial; now rewrite pos_sub_diag. Qed. Lemma add_opp_diag_l n : - n + n = 0. Proof. rewrite add_comm. apply add_opp_diag_r. Qed. (** ** Commutativity of multiplication *) Lemma mul_comm n m : n * m = m * n. Proof. destruct n, m; simpl; trivial; f_equal; apply Pos.mul_comm. Qed. (** ** Associativity of multiplication *) Lemma mul_assoc n m p : n * (m * p) = n * m * p. Proof. destruct n, m, p; simpl; trivial; f_equal; apply Pos.mul_assoc. Qed. (** Multiplication and constants *) Lemma mul_1_l n : 1 * n = n. Proof. now destruct n. Qed. Lemma mul_1_r n : n * 1 = n. Proof. destruct n; simpl; now rewrite ?Pos.mul_1_r. Qed. (** ** Multiplication and Opposite *) Lemma mul_opp_l n m : - n * m = - (n * m). Proof. now destruct n, m. Qed. Lemma mul_opp_r n m : n * - m = - (n * m). Proof. now destruct n, m. Qed. Lemma mul_opp_opp n m : - n * - m = n * m. Proof. now destruct n, m. Qed. Lemma mul_opp_comm n m : - n * m = n * - m. Proof. now destruct n, m. Qed. (** ** Distributivity of multiplication over addition *) Lemma mul_add_distr_pos (p:positive) n m : pos p * (n + m) = pos p * n + pos p * m. Proof. destruct n as [|n|n], m as [|m|m]; simpl; trivial; rewrite ?pos_sub_spec, ?Pos.mul_compare_mono_l; try case Pos.compare_spec; intros; now rewrite ?Pos.mul_add_distr_l, ?Pos.mul_sub_distr_l. Qed. Lemma mul_add_distr_l n m p : n * (m + p) = n * m + n * p. Proof. destruct n as [|n|n]. trivial. apply mul_add_distr_pos. change (neg n) with (- pos n). rewrite !mul_opp_l, <- opp_add_distr. f_equal. apply mul_add_distr_pos. Qed. Lemma mul_add_distr_r n m p : (n + m) * p = n * p + m * p. Proof. rewrite !(mul_comm _ p). apply mul_add_distr_l. Qed. (** ** Basic properties of divisibility *) Lemma divide_Zpos p q : (pos p|pos q) <-> (p|q)%positive. Proof. split. intros ([ |r|r],H); simpl in *; destr_eq H. exists r; auto. intros (r,H). exists (pos r); simpl; now f_equal. Qed. Lemma divide_Zpos_Zneg_r n p : (n|pos p) <-> (n|neg p). Proof. split; intros (m,H); exists (-m); now rewrite mul_opp_l, <- H. Qed. Lemma divide_Zpos_Zneg_l n p : (pos p|n) <-> (neg p|n). Proof. split; intros (m,H); exists (-m); now rewrite mul_opp_l, <- mul_opp_r. Qed. (** ** Conversions between [Z.testbit] and [N.testbit] *) Lemma testbit_of_N a n : testbit (of_N a) (of_N n) = N.testbit a n. Proof. destruct a as [|a], n; simpl; trivial. now destruct a. Qed. Lemma testbit_of_N' a n : 0<=n -> testbit (of_N a) n = N.testbit a (to_N n). Proof. intro Hn. rewrite <- testbit_of_N. f_equal. destruct n; trivial; now destruct Hn. Qed. Lemma testbit_Zpos a n : 0<=n -> testbit (pos a) n = N.testbit (N.pos a) (to_N n). Proof. intro Hn. now rewrite <- testbit_of_N'. Qed. Lemma testbit_Zneg a n : 0<=n -> testbit (neg a) n = negb (N.testbit (Pos.pred_N a) (to_N n)). Proof. intro Hn. rewrite <- testbit_of_N' by trivial. destruct n as [ |n|n]; [ | simpl; now destruct (Pos.pred_N a) | now destruct Hn]. unfold testbit. now destruct a as [|[ | | ]| ]. Qed. End Private_BootStrap. (** * Proofs of specifications *) (** ** Specification of constants *) Lemma one_succ : 1 = succ 0. Proof. reflexivity. Qed. Lemma two_succ : 2 = succ 1. Proof. reflexivity. Qed. (** ** Specification of addition *) Lemma add_0_l n : 0 + n = n. Proof. now destruct n. Qed. Lemma add_succ_l n m : succ n + m = succ (n + m). Proof. unfold succ. now rewrite 2 (add_comm _ 1), add_assoc. Qed. (** ** Specification of opposite *) Lemma opp_0 : -0 = 0. Proof. reflexivity. Qed. Lemma opp_succ n : -(succ n) = pred (-n). Proof. unfold succ, pred. apply opp_add_distr. Qed. (** ** Specification of successor and predecessor *) Lemma succ_pred n : succ (pred n) = n. Proof. unfold succ, pred. now rewrite <- add_assoc, add_opp_diag_r, add_0_r. Qed. Lemma pred_succ n : pred (succ n) = n. Proof. unfold succ, pred. now rewrite <- add_assoc, add_opp_diag_r, add_0_r. Qed. (** ** Specification of subtraction *) Lemma sub_0_r n : n - 0 = n. Proof. apply add_0_r. Qed. Lemma sub_succ_r n m : n - succ m = pred (n - m). Proof. unfold sub, succ, pred. now rewrite opp_add_distr, add_assoc. Qed. (** ** Specification of multiplication *) Lemma mul_0_l n : 0 * n = 0. Proof. reflexivity. Qed. Lemma mul_succ_l n m : succ n * m = n * m + m. Proof. unfold succ. now rewrite mul_add_distr_r, mul_1_l. Qed. (** ** Specification of comparisons and order *) Lemma eqb_eq n m : (n =? m) = true <-> n = m. Proof. destruct n, m; simpl; try (now split); rewrite Pos.eqb_eq; split; (now injection 1) || (intros; now f_equal). Qed. Lemma ltb_lt n m : (n n < m. Proof. unfold ltb, lt. destruct compare; easy'. Qed. Lemma leb_le n m : (n <=? m) = true <-> n <= m. Proof. unfold leb, le. destruct compare; easy'. Qed. Lemma compare_eq_iff n m : (n ?= m) = Eq <-> n = m. Proof. destruct n, m; simpl; rewrite ?CompOpp_iff, ?Pos.compare_eq_iff; split; congruence. Qed. Lemma compare_sub n m : (n ?= m) = (n - m ?= 0). Proof. destruct n as [|n|n], m as [|m|m]; simpl; trivial; rewrite <- ? Pos.compare_antisym, ?pos_sub_spec; case Pos.compare_spec; trivial. Qed. Lemma compare_antisym n m : (m ?= n) = CompOpp (n ?= m). Proof. destruct n, m; simpl; trivial; now rewrite <- ?Pos.compare_antisym. Qed. Lemma compare_lt_iff n m : (n ?= m) = Lt <-> n < m. Proof. reflexivity. Qed. Lemma compare_le_iff n m : (n ?= m) <> Gt <-> n <= m. Proof. reflexivity. Qed. (** Some more advanced properties of comparison and orders, including [compare_spec] and [lt_irrefl] and [lt_eq_cases]. *) Include BoolOrderFacts. (** Remaining specification of [lt] and [le] *) Lemma lt_succ_r n m : n < succ m <-> n<=m. Proof. unfold lt, le. rewrite compare_sub, sub_succ_r. rewrite (compare_sub n m). destruct (n-m) as [|[ | | ]|]; easy'. Qed. (** ** Specification of minimum and maximum *) Lemma max_l n m : m<=n -> max n m = n. Proof. unfold le, max. rewrite (compare_antisym n m). case compare; intuition. Qed. Lemma max_r n m : n<=m -> max n m = m. Proof. unfold le, max. case compare_spec; intuition. Qed. Lemma min_l n m : n<=m -> min n m = n. Proof. unfold le, min. case compare_spec; intuition. Qed. Lemma min_r n m : m<=n -> min n m = m. Proof. unfold le, min. rewrite (compare_antisym n m). case compare_spec; intuition. Qed. (** ** Specification of absolute value *) Lemma abs_eq n : 0 <= n -> abs n = n. Proof. destruct n; trivial. now destruct 1. Qed. Lemma abs_neq n : n <= 0 -> abs n = - n. Proof. destruct n; trivial. now destruct 1. Qed. (** ** Specification of sign *) Lemma sgn_null n : n = 0 -> sgn n = 0. Proof. intros. now subst. Qed. Lemma sgn_pos n : 0 < n -> sgn n = 1. Proof. now destruct n. Qed. Lemma sgn_neg n : n < 0 -> sgn n = -1. Proof. now destruct n. Qed. (** ** Specification of power *) Lemma pow_0_r n : n^0 = 1. Proof. reflexivity. Qed. Lemma pow_succ_r n m : 0<=m -> n^(succ m) = n * n^m. Proof. destruct m as [|m|m]; (now destruct 1) || (intros _); simpl; trivial. unfold pow_pos. now rewrite Pos.add_comm, Pos.iter_add. Qed. Lemma pow_neg_r n m : m<0 -> n^m = 0. Proof. now destruct m. Qed. (** For folding back a [pow_pos] into a [pow] *) Lemma pow_pos_fold n p : pow_pos n p = n ^ (pos p). Proof. reflexivity. Qed. (** ** Specification of square *) Lemma square_spec n : square n = n * n. Proof. destruct n; trivial; simpl; f_equal; apply Pos.square_spec. Qed. (** ** Specification of square root *) Lemma sqrtrem_spec n : 0<=n -> let (s,r) := sqrtrem n in n = s*s + r /\ 0 <= r <= 2*s. Proof. destruct n. now repeat split. generalize (Pos.sqrtrem_spec p). simpl. destruct 1; simpl; subst; now repeat split. now destruct 1. Qed. Lemma sqrt_spec n : 0<=n -> let s := sqrt n in s*s <= n < (succ s)*(succ s). Proof. destruct n. now repeat split. unfold sqrt. intros _. simpl succ. rewrite Pos.add_1_r. apply (Pos.sqrt_spec p). now destruct 1. Qed. Lemma sqrt_neg n : n<0 -> sqrt n = 0. Proof. now destruct n. Qed. Lemma sqrtrem_sqrt n : fst (sqrtrem n) = sqrt n. Proof. destruct n; try reflexivity. unfold sqrtrem, sqrt, Pos.sqrt. destruct (Pos.sqrtrem p) as (s,r). now destruct r. Qed. (** ** Specification of logarithm *) Lemma log2_spec n : 0 < n -> 2^(log2 n) <= n < 2^(succ (log2 n)). Proof. assert (Pow : forall p q, pos (p^q) = (pos p)^(pos q)). { intros. now apply Pos.iter_swap_gen. } destruct n as [|[p|p|]|]; intros Hn; split; try easy; unfold log2; simpl succ; rewrite ?Pos.add_1_r, <- Pow. change (2^Pos.size p <= Pos.succ (p~0))%positive. apply Pos.lt_le_incl, Pos.lt_succ_r, Pos.size_le. apply Pos.size_gt. apply Pos.size_le. apply Pos.size_gt. Qed. Lemma log2_nonpos n : n<=0 -> log2 n = 0. Proof. destruct n as [|p|p]; trivial; now destruct 1. Qed. (** Specification of parity functions *) Lemma even_spec n : even n = true <-> Even n. Proof. split. exists (div2 n). now destruct n as [|[ | | ]|[ | | ]]. intros (m,->). now destruct m. Qed. Lemma odd_spec n : odd n = true <-> Odd n. Proof. split. exists (div2 n). destruct n as [|[ | | ]|[ | | ]]; simpl; try easy. now rewrite Pos.pred_double_succ. intros (m,->). now destruct m as [|[ | | ]|[ | | ]]. Qed. (** ** Multiplication and Doubling *) Lemma double_spec n : double n = 2*n. Proof. reflexivity. Qed. Lemma succ_double_spec n : succ_double n = 2*n + 1. Proof. now destruct n. Qed. Lemma pred_double_spec n : pred_double n = 2*n - 1. Proof. now destruct n. Qed. (** ** Correctness proofs for Trunc division *) Lemma pos_div_eucl_eq a b : 0 < b -> let (q, r) := pos_div_eucl a b in pos a = q * b + r. Proof. intros Hb. induction a; unfold pos_div_eucl; fold pos_div_eucl. - (* ~1 *) destruct pos_div_eucl as (q,r). change (pos a~1) with (2*(pos a)+1). rewrite IHa, mul_add_distr_l, mul_assoc. destruct ltb. now rewrite add_assoc. rewrite mul_add_distr_r, mul_1_l, <- !add_assoc. f_equal. unfold sub. now rewrite (add_comm _ (-b)), add_assoc, add_opp_diag_r. - (* ~0 *) destruct pos_div_eucl as (q,r). change (pos a~0) with (2*pos a). rewrite IHa, mul_add_distr_l, mul_assoc. destruct ltb. trivial. rewrite mul_add_distr_r, mul_1_l, <- !add_assoc. f_equal. unfold sub. now rewrite (add_comm _ (-b)), add_assoc, add_opp_diag_r. - (* 1 *) case leb_spec; trivial. intros Hb'. destruct b as [|b|b]; try easy; clear Hb. replace b with 1%positive; trivial. apply Pos.le_antisym. apply Pos.le_1_l. now apply Pos.lt_succ_r. Qed. Lemma div_eucl_eq a b : b<>0 -> let (q, r) := div_eucl a b in a = b * q + r. Proof. destruct a as [ |a|a], b as [ |b|b]; unfold div_eucl; trivial; (now destruct 1) || intros _; generalize (pos_div_eucl_eq a (pos b) (eq_refl _)); destruct pos_div_eucl as (q,r); rewrite mul_comm. - (* pos pos *) trivial. - (* pos neg *) intros ->. destruct r as [ |r|r]; rewrite <- !mul_opp_comm; trivial; rewrite mul_add_distr_l, mul_1_r, <- add_assoc; f_equal; now rewrite add_assoc, add_opp_diag_r. - (* neg pos *) change (neg a) with (- pos a). intros ->. rewrite (opp_add_distr _ r), <- mul_opp_r. destruct r as [ |r|r]; trivial; rewrite opp_add_distr, mul_add_distr_l, <- add_assoc; f_equal; unfold sub; now rewrite add_assoc, mul_opp_r, mul_1_r, add_opp_diag_l. - (* neg neg *) change (neg a) with (- pos a). intros ->. now rewrite opp_add_distr, <- mul_opp_l. Qed. Lemma div_mod a b : b<>0 -> a = b*(a/b) + (a mod b). Proof. intros Hb. generalize (div_eucl_eq a b Hb). unfold div, modulo. now destruct div_eucl. Qed. Lemma pos_div_eucl_bound a b : 0 0 <= snd (pos_div_eucl a b) < b. Proof. assert (AUX : forall m p, m < pos (p~0) -> m - pos p < pos p). intros m p. unfold lt. rewrite (compare_sub m), (compare_sub _ (pos _)). unfold sub. rewrite <- add_assoc. simpl opp; simpl (neg _ + _). now rewrite Pos.add_diag. intros Hb. destruct b as [|b|b]; discriminate Hb || clear Hb. induction a; unfold pos_div_eucl; fold pos_div_eucl. (* ~1 *) destruct pos_div_eucl as (q,r). simpl in IHa; destruct IHa as (Hr,Hr'). case ltb_spec; intros H; unfold snd. split; trivial. now destruct r. split. unfold le. now rewrite compare_antisym, <- compare_sub, <- compare_antisym. apply AUX. rewrite <- succ_double_spec. destruct r; try easy. unfold lt in *; simpl in *. now rewrite Pos.compare_xI_xO, Hr'. (* ~0 *) destruct pos_div_eucl as (q,r). simpl in IHa; destruct IHa as (Hr,Hr'). case ltb_spec; intros H; unfold snd. split; trivial. now destruct r. split. unfold le. now rewrite compare_antisym, <- compare_sub, <- compare_antisym. apply AUX. destruct r; try easy. (* 1 *) case leb_spec; intros H; simpl; split; try easy. red; simpl. now apply Pos.le_succ_l. Qed. Lemma mod_pos_bound a b : 0 < b -> 0 <= a mod b < b. Proof. destruct b as [|b|b]; try easy; intros _. destruct a as [|a|a]; unfold modulo, div_eucl. now split. now apply pos_div_eucl_bound. generalize (pos_div_eucl_bound a (pos b) (eq_refl _)). destruct pos_div_eucl as (q,r); unfold snd; intros (Hr,Hr'). destruct r as [|r|r]; (now destruct Hr) || clear Hr. now split. split. unfold le. now rewrite compare_antisym, <- compare_sub, <- compare_antisym, Hr'. unfold lt in *; simpl in *. rewrite pos_sub_gt by trivial. simpl. now apply Pos.sub_decr. Qed. Definition mod_bound_pos a b (_:0<=a) := mod_pos_bound a b. Lemma mod_neg_bound a b : b < 0 -> b < a mod b <= 0. Proof. destruct b as [|b|b]; try easy; intros _. destruct a as [|a|a]; unfold modulo, div_eucl. now split. generalize (pos_div_eucl_bound a (pos b) (eq_refl _)). destruct pos_div_eucl as (q,r); unfold snd; intros (Hr,Hr'). destruct r as [|r|r]; (now destruct Hr) || clear Hr. now split. split. unfold lt in *; simpl in *. rewrite pos_sub_lt by trivial. rewrite <- Pos.compare_antisym. now apply Pos.sub_decr. change (neg b - neg r <= 0). unfold le, lt in *. rewrite <- compare_sub. simpl in *. now rewrite <- Pos.compare_antisym, Hr'. generalize (pos_div_eucl_bound a (pos b) (eq_refl _)). destruct pos_div_eucl as (q,r); unfold snd; intros (Hr,Hr'). split; destruct r; try easy. red; simpl; now rewrite <- Pos.compare_antisym. Qed. (** ** Correctness proofs for Floor division *) Theorem quotrem_eq a b : let (q,r) := quotrem a b in a = q * b + r. Proof. destruct a as [|a|a], b as [|b|b]; simpl; trivial; generalize (N.pos_div_eucl_spec a (N.pos b)); case N.pos_div_eucl; trivial; intros q r; try change (neg a) with (-pos a); change (pos a) with (of_N (N.pos a)); intros ->; now destruct q, r. Qed. Lemma quot_rem' a b : a = b*(a÷b) + rem a b. Proof. rewrite mul_comm. generalize (quotrem_eq a b). unfold quot, rem. now destruct quotrem. Qed. Lemma quot_rem a b : b<>0 -> a = b*(a÷b) + rem a b. Proof. intros _. apply quot_rem'. Qed. Lemma rem_bound_pos a b : 0<=a -> 0 0 <= rem a b < b. Proof. intros Ha Hb. destruct b as [|b|b]; (now discriminate Hb) || clear Hb; destruct a as [|a|a]; (now destruct Ha) || clear Ha. compute. now split. unfold rem, quotrem. assert (H := N.pos_div_eucl_remainder a (N.pos b)). destruct N.pos_div_eucl as (q,[|r]); simpl; split; try easy. now apply H. Qed. Lemma rem_opp_l' a b : rem (-a) b = - (rem a b). Proof. destruct a, b; trivial; unfold rem; simpl; now destruct N.pos_div_eucl as (q,[|r]). Qed. Lemma rem_opp_r' a b : rem a (-b) = rem a b. Proof. destruct a, b; trivial; unfold rem; simpl; now destruct N.pos_div_eucl as (q,[|r]). Qed. Lemma rem_opp_l a b : b<>0 -> rem (-a) b = - (rem a b). Proof. intros _. apply rem_opp_l'. Qed. Lemma rem_opp_r a b : b<>0 -> rem a (-b) = rem a b. Proof. intros _. apply rem_opp_r'. Qed. (** ** Correctness proofs for gcd *) Lemma ggcd_gcd a b : fst (ggcd a b) = gcd a b. Proof. destruct a as [ |p|p], b as [ |q|q]; simpl; auto; generalize (Pos.ggcd_gcd p q); destruct Pos.ggcd as (g,(aa,bb)); simpl; congruence. Qed. Lemma ggcd_correct_divisors a b : let '(g,(aa,bb)) := ggcd a b in a = g*aa /\ b = g*bb. Proof. destruct a as [ |p|p], b as [ |q|q]; simpl; rewrite ?Pos.mul_1_r; auto; generalize (Pos.ggcd_correct_divisors p q); destruct Pos.ggcd as (g,(aa,bb)); simpl; destruct 1; now subst. Qed. Lemma gcd_divide_l a b : (gcd a b | a). Proof. rewrite <- ggcd_gcd. generalize (ggcd_correct_divisors a b). destruct ggcd as (g,(aa,bb)); simpl. intros (H,_). exists aa. now rewrite mul_comm. Qed. Lemma gcd_divide_r a b : (gcd a b | b). Proof. rewrite <- ggcd_gcd. generalize (ggcd_correct_divisors a b). destruct ggcd as (g,(aa,bb)); simpl. intros (_,H). exists bb. now rewrite mul_comm. Qed. Lemma gcd_greatest a b c : (c|a) -> (c|b) -> (c | gcd a b). Proof. assert (H : forall p q r, (r|pos p) -> (r|pos q) -> (r|pos (Pos.gcd p q))). { intros p q [|r|r] H H'. destruct H; now rewrite mul_comm in *. apply divide_Zpos, Pos.gcd_greatest; now apply divide_Zpos. apply divide_Zpos_Zneg_l, divide_Zpos, Pos.gcd_greatest; now apply divide_Zpos, divide_Zpos_Zneg_l. } destruct a, b; simpl; auto; intros; try apply H; trivial; now apply divide_Zpos_Zneg_r. Qed. Lemma gcd_nonneg a b : 0 <= gcd a b. Proof. now destruct a, b. Qed. (** ggcd and opp : an auxiliary result used in QArith *) Theorem ggcd_opp a b : ggcd (-a) b = (let '(g,(aa,bb)) := ggcd a b in (g,(-aa,bb))). Proof. destruct a as [|a|a], b as [|b|b]; unfold ggcd, opp; auto; destruct (Pos.ggcd a b) as (g,(aa,bb)); auto. Qed. (** ** Proofs of specifications for bitwise operations *) Lemma div2_spec a : div2 a = shiftr a 1. Proof. reflexivity. Qed. Lemma testbit_0_l n : testbit 0 n = false. Proof. now destruct n. Qed. Lemma testbit_neg_r a n : n<0 -> testbit a n = false. Proof. now destruct n. Qed. Lemma testbit_odd_0 a : testbit (2*a+1) 0 = true. Proof. now destruct a as [|a|[a|a|]]. Qed. Lemma testbit_even_0 a : testbit (2*a) 0 = false. Proof. now destruct a. Qed. Lemma testbit_odd_succ a n : 0<=n -> testbit (2*a+1) (succ n) = testbit a n. Proof. destruct n as [|n|n]; (now destruct 1) || intros _. destruct a as [|[a|a|]|[a|a|]]; simpl; trivial. now destruct a. unfold testbit; simpl. destruct a as [|a|[a|a|]]; simpl; trivial; rewrite ?Pos.add_1_r, ?Pos.pred_N_succ; now destruct n. Qed. Lemma testbit_even_succ a n : 0<=n -> testbit (2*a) (succ n) = testbit a n. Proof. destruct n as [|n|n]; (now destruct 1) || intros _. destruct a as [|[a|a|]|[a|a|]]; simpl; trivial. now destruct a. unfold testbit; simpl. destruct a as [|a|[a|a|]]; simpl; trivial; rewrite ?Pos.add_1_r, ?Pos.pred_N_succ; now destruct n. Qed. (** Correctness proofs about [Z.shiftr] and [Z.shiftl] *) Lemma shiftr_spec_aux a n m : 0<=n -> 0<=m -> testbit (shiftr a n) m = testbit a (m+n). Proof. intros Hn Hm. unfold shiftr. destruct n as [ |n|n]; (now destruct Hn) || clear Hn; simpl. now rewrite add_0_r. assert (forall p, to_N (m + pos p) = (to_N m + N.pos p)%N). destruct m; trivial; now destruct Hm. assert (forall p, 0 <= m + pos p). destruct m; easy || now destruct Hm. destruct a as [ |a|a]. (* a = 0 *) replace (Pos.iter div2 0 n) with 0 by (apply Pos.iter_invariant; intros; subst; trivial). now rewrite 2 testbit_0_l. (* a > 0 *) change (pos a) with (of_N (N.pos a)) at 1. rewrite <- (Pos.iter_swap_gen _ _ _ N.div2) by now intros [|[ | | ]]. rewrite testbit_Zpos, testbit_of_N', H; trivial. exact (N.shiftr_spec' (N.pos a) (N.pos n) (to_N m)). (* a < 0 *) rewrite <- (Pos.iter_swap_gen _ _ _ Pos.div2_up) by trivial. rewrite 2 testbit_Zneg, H; trivial. f_equal. rewrite (Pos.iter_swap_gen _ _ _ _ N.div2) by exact N.pred_div2_up. exact (N.shiftr_spec' (Pos.pred_N a) (N.pos n) (to_N m)). Qed. Lemma shiftl_spec_low a n m : m testbit (shiftl a n) m = false. Proof. intros H. destruct n as [|n|n], m as [|m|m]; try easy; simpl shiftl. destruct (Pos.succ_pred_or n) as [-> | <-]; rewrite ?Pos.iter_succ; apply testbit_even_0. destruct a as [ |a|a]. (* a = 0 *) replace (Pos.iter (mul 2) 0 n) with 0 by (apply Pos.iter_invariant; intros; subst; trivial). apply testbit_0_l. (* a > 0 *) rewrite <- (Pos.iter_swap_gen _ _ _ xO) by trivial. rewrite testbit_Zpos by easy. exact (N.shiftl_spec_low (N.pos a) (N.pos n) (N.pos m) H). (* a < 0 *) rewrite <- (Pos.iter_swap_gen _ _ _ xO) by trivial. rewrite testbit_Zneg by easy. now rewrite (N.pos_pred_shiftl_low a (N.pos n)). Qed. Lemma shiftl_spec_high a n m : 0<=m -> n<=m -> testbit (shiftl a n) m = testbit a (m-n). Proof. intros Hm H. destruct n as [ |n|n]. simpl. now rewrite sub_0_r. (* n > 0 *) destruct m as [ |m|m]; try (now destruct H). assert (0 <= pos m - pos n). red. now rewrite compare_antisym, <- compare_sub, <- compare_antisym. assert (EQ : to_N (pos m - pos n) = (N.pos m - N.pos n)%N). red in H. simpl in H. simpl to_N. rewrite pos_sub_spec, Pos.compare_antisym. destruct (Pos.compare_spec n m) as [H'|H'|H']; try (now destruct H). subst. now rewrite N.sub_diag. simpl. destruct (Pos.sub_mask_pos' m n H') as (p & -> & <-). f_equal. now rewrite Pos.add_comm, Pos.add_sub. destruct a; unfold shiftl. (* ... a = 0 *) replace (Pos.iter (mul 2) 0 n) with 0 by (apply Pos.iter_invariant; intros; subst; trivial). now rewrite 2 testbit_0_l. (* ... a > 0 *) rewrite <- (Pos.iter_swap_gen _ _ _ xO) by trivial. rewrite 2 testbit_Zpos, EQ by easy. exact (N.shiftl_spec_high' (N.pos p) (N.pos n) (N.pos m) H). (* ... a < 0 *) rewrite <- (Pos.iter_swap_gen _ _ _ xO) by trivial. rewrite 2 testbit_Zneg, EQ by easy. f_equal. simpl to_N. rewrite <- N.shiftl_spec_high by easy. now apply (N.pos_pred_shiftl_high p (N.pos n)). (* n < 0 *) unfold sub. simpl. now apply (shiftr_spec_aux a (pos n) m). Qed. Lemma shiftr_spec a n m : 0<=m -> testbit (shiftr a n) m = testbit a (m+n). Proof. intros Hm. destruct (leb_spec 0 n). now apply shiftr_spec_aux. destruct (leb_spec (-n) m) as [LE|GT]. unfold shiftr. rewrite (shiftl_spec_high a (-n) m); trivial. now destruct n. unfold shiftr. rewrite (shiftl_spec_low a (-n) m); trivial. rewrite testbit_neg_r; trivial. red in GT. rewrite compare_sub in GT. now destruct n. Qed. (** Correctness proofs for bitwise operations *) Lemma lor_spec a b n : testbit (lor a b) n = testbit a n || testbit b n. Proof. destruct (leb_spec 0 n) as [Hn|Hn]; [|now rewrite !testbit_neg_r]. destruct a as [ |a|a], b as [ |b|b]; rewrite ?testbit_0_l, ?orb_false_r; trivial; unfold lor; rewrite ?testbit_Zpos, ?testbit_Zneg, ?N.pos_pred_succ by trivial. now rewrite <- N.lor_spec. now rewrite N.ldiff_spec, negb_andb, negb_involutive, orb_comm. now rewrite N.ldiff_spec, negb_andb, negb_involutive. now rewrite N.land_spec, negb_andb. Qed. Lemma land_spec a b n : testbit (land a b) n = testbit a n && testbit b n. Proof. destruct (leb_spec 0 n) as [Hn|Hn]; [|now rewrite !testbit_neg_r]. destruct a as [ |a|a], b as [ |b|b]; rewrite ?testbit_0_l, ?andb_false_r; trivial; unfold land; rewrite ?testbit_Zpos, ?testbit_Zneg, ?testbit_of_N', ?N.pos_pred_succ by trivial. now rewrite <- N.land_spec. now rewrite N.ldiff_spec. now rewrite N.ldiff_spec, andb_comm. now rewrite N.lor_spec, negb_orb. Qed. Lemma ldiff_spec a b n : testbit (ldiff a b) n = testbit a n && negb (testbit b n). Proof. destruct (leb_spec 0 n) as [Hn|Hn]; [|now rewrite !testbit_neg_r]. destruct a as [ |a|a], b as [ |b|b]; rewrite ?testbit_0_l, ?andb_true_r; trivial; unfold ldiff; rewrite ?testbit_Zpos, ?testbit_Zneg, ?testbit_of_N', ?N.pos_pred_succ by trivial. now rewrite <- N.ldiff_spec. now rewrite N.land_spec, negb_involutive. now rewrite N.lor_spec, negb_orb. now rewrite N.ldiff_spec, negb_involutive, andb_comm. Qed. Lemma lxor_spec a b n : testbit (lxor a b) n = xorb (testbit a n) (testbit b n). Proof. destruct (leb_spec 0 n) as [Hn|Hn]; [|now rewrite !testbit_neg_r]. destruct a as [ |a|a], b as [ |b|b]; rewrite ?testbit_0_l, ?xorb_false_l, ?xorb_false_r; trivial; unfold lxor; rewrite ?testbit_Zpos, ?testbit_Zneg, ?testbit_of_N', ?N.pos_pred_succ by trivial. now rewrite <- N.lxor_spec. now rewrite N.lxor_spec, negb_xorb_r. now rewrite N.lxor_spec, negb_xorb_l. now rewrite N.lxor_spec, xorb_negb_negb. Qed. (** ** Induction principles based on successor / predecessor *) Lemma peano_ind (P : Z -> Prop) : P 0 -> (forall x, P x -> P (succ x)) -> (forall x, P x -> P (pred x)) -> forall z, P z. Proof. intros H0 Hs Hp z; destruct z. assumption. induction p using Pos.peano_ind. now apply (Hs 0). rewrite <- Pos.add_1_r. now apply (Hs (pos p)). induction p using Pos.peano_ind. now apply (Hp 0). rewrite <- Pos.add_1_r. now apply (Hp (neg p)). Qed. Lemma bi_induction (P : Z -> Prop) : Proper (eq ==> iff) P -> P 0 -> (forall x, P x <-> P (succ x)) -> forall z, P z. Proof. intros _ H0 Hs. induction z using peano_ind. assumption. now apply -> Hs. apply Hs. now rewrite succ_pred. Qed. (** * Proofs of morphisms, obvious since eq is Leibniz *) Local Obligation Tactic := simpl_relation. Program Definition succ_wd : Proper (eq==>eq) succ := _. Program Definition pred_wd : Proper (eq==>eq) pred := _. Program Definition opp_wd : Proper (eq==>eq) opp := _. Program Definition add_wd : Proper (eq==>eq==>eq) add := _. Program Definition sub_wd : Proper (eq==>eq==>eq) sub := _. Program Definition mul_wd : Proper (eq==>eq==>eq) mul := _. Program Definition lt_wd : Proper (eq==>eq==>iff) lt := _. Program Definition div_wd : Proper (eq==>eq==>eq) div := _. Program Definition mod_wd : Proper (eq==>eq==>eq) modulo := _. Program Definition quot_wd : Proper (eq==>eq==>eq) quot := _. Program Definition rem_wd : Proper (eq==>eq==>eq) rem := _. Program Definition pow_wd : Proper (eq==>eq==>eq) pow := _. Program Definition testbit_wd : Proper (eq==>eq==>Logic.eq) testbit := _. Include ZProp <+ UsualMinMaxLogicalProperties <+ UsualMinMaxDecProperties. (** In generic statements, the predicates [lt] and [le] have been favored, whereas [gt] and [ge] don't even exist in the abstract layers. The use of [gt] and [ge] is hence not recommended. We provide here the bare minimal results to related them with [lt] and [le]. *) Lemma gt_lt_iff n m : n > m <-> m < n. Proof. unfold lt, gt. now rewrite compare_antisym, CompOpp_iff. Qed. Lemma gt_lt n m : n > m -> m < n. Proof. apply gt_lt_iff. Qed. Lemma lt_gt n m : n < m -> m > n. Proof. apply gt_lt_iff. Qed. Lemma ge_le_iff n m : n >= m <-> m <= n. Proof. unfold le, ge. now rewrite compare_antisym, CompOpp_iff. Qed. Lemma ge_le n m : n >= m -> m <= n. Proof. apply ge_le_iff. Qed. Lemma le_ge n m : n <= m -> m >= n. Proof. apply ge_le_iff. Qed. (** We provide a tactic converting from one style to the other. *) Ltac swap_greater := rewrite ?gt_lt_iff in *; rewrite ?ge_le_iff in *. (** Similarly, the boolean comparisons [ltb] and [leb] are favored over their dual [gtb] and [geb]. We prove here the equivalence and a few minimal results. *) Lemma gtb_ltb n m : (n >? m) = (m =? m) = (m <=? n). Proof. unfold geb, leb. rewrite compare_antisym. now case compare. Qed. Lemma gtb_lt n m : (n >? m) = true <-> m < n. Proof. rewrite gtb_ltb. apply ltb_lt. Qed. Lemma geb_le n m : (n >=? m) = true <-> m <= n. Proof. rewrite geb_leb. apply leb_le. Qed. Lemma gtb_spec n m : BoolSpec (m? m). Proof. rewrite gtb_ltb. apply ltb_spec. Qed. Lemma geb_spec n m : BoolSpec (m<=n) (n=? m). Proof. rewrite geb_leb. apply leb_spec. Qed. (** TODO : to add in Numbers ? *) Lemma add_reg_l n m p : n + m = n + p -> m = p. Proof. exact (proj1 (add_cancel_l m p n)). Qed. Lemma mul_reg_l n m p : p <> 0 -> p * n = p * m -> n = m. Proof. exact (fun Hp => proj1 (mul_cancel_l n m p Hp)). Qed. Lemma mul_reg_r n m p : p <> 0 -> n * p = m * p -> n = m. Proof. exact (fun Hp => proj1 (mul_cancel_r n m p Hp)). Qed. Lemma opp_eq_mul_m1 n : - n = n * -1. Proof. rewrite mul_comm. now destruct n. Qed. Lemma add_diag n : n + n = 2 * n. Proof. change 2 with (1+1). now rewrite mul_add_distr_r, !mul_1_l. Qed. (** * Comparison and opposite *) Lemma compare_opp n m : (- n ?= - m) = (m ?= n). Proof. destruct n, m; simpl; trivial; intros; now rewrite <- Pos.compare_antisym. Qed. (** * Comparison and addition *) Lemma add_compare_mono_l n m p : (n + m ?= n + p) = (m ?= p). Proof. rewrite (compare_sub m p), compare_sub. f_equal. unfold sub. rewrite opp_add_distr, (add_comm n m), add_assoc. f_equal. now rewrite <- add_assoc, add_opp_diag_r, add_0_r. Qed. End Z. Bind Scope Z_scope with Z.t Z. (** Re-export Notations *) Infix "+" := Z.add : Z_scope. Notation "- x" := (Z.opp x) : Z_scope. Infix "-" := Z.sub : Z_scope. Infix "*" := Z.mul : Z_scope. Infix "^" := Z.pow : Z_scope. Infix "/" := Z.div : Z_scope. Infix "mod" := Z.modulo (at level 40, no associativity) : Z_scope. Infix "÷" := Z.quot (at level 40, left associativity) : Z_scope. Infix "?=" := Z.compare (at level 70, no associativity) : Z_scope. Infix "=?" := Z.eqb (at level 70, no associativity) : Z_scope. Infix "<=?" := Z.leb (at level 70, no associativity) : Z_scope. Infix "=?" := Z.geb (at level 70, no associativity) : Z_scope. Infix ">?" := Z.gtb (at level 70, no associativity) : Z_scope. Notation "( x | y )" := (Z.divide x y) (at level 0) : Z_scope. Infix "<=" := Z.le : Z_scope. Infix "<" := Z.lt : Z_scope. Infix ">=" := Z.ge : Z_scope. Infix ">" := Z.gt : Z_scope. Notation "x <= y <= z" := (x <= y /\ y <= z) : Z_scope. Notation "x <= y < z" := (x <= y /\ y < z) : Z_scope. Notation "x < y < z" := (x < y /\ y < z) : Z_scope. Notation "x < y <= z" := (x < y /\ y <= z) : Z_scope. (** Conversions from / to positive numbers *) Module Pos2Z. Lemma id p : Z.to_pos (Z.pos p) = p. Proof. reflexivity. Qed. Lemma inj p q : Z.pos p = Z.pos q -> p = q. Proof. now injection 1. Qed. Lemma inj_iff p q : Z.pos p = Z.pos q <-> p = q. Proof. split. apply inj. intros; now f_equal. Qed. Lemma is_pos p : 0 < Z.pos p. Proof. reflexivity. Qed. Lemma is_nonneg p : 0 <= Z.pos p. Proof. easy. Qed. Lemma inj_1 : Z.pos 1 = 1. Proof. reflexivity. Qed. Lemma inj_xO p : Z.pos p~0 = 2 * Z.pos p. Proof. reflexivity. Qed. Lemma inj_xI p : Z.pos p~1 = 2 * Z.pos p + 1. Proof. reflexivity. Qed. Lemma inj_succ p : Z.pos (Pos.succ p) = Z.succ (Z.pos p). Proof. simpl. now rewrite Pos.add_1_r. Qed. Lemma inj_add p q : Z.pos (p+q) = Z.pos p + Z.pos q. Proof. reflexivity. Qed. Lemma inj_sub p q : (p < q)%positive -> Z.pos (q-p) = Z.pos q - Z.pos p. Proof. intros. simpl. now rewrite Z.pos_sub_gt. Qed. Lemma inj_sub_max p q : Z.pos (p - q) = Z.max 1 (Z.pos p - Z.pos q). Proof. simpl. rewrite Z.pos_sub_spec. case Pos.compare_spec; intros. - subst; now rewrite Pos.sub_diag. - now rewrite Pos.sub_lt. - now destruct (p-q)%positive. Qed. Lemma inj_pred p : p <> 1%positive -> Z.pos (Pos.pred p) = Z.pred (Z.pos p). Proof. destruct p; easy || now destruct 1. Qed. Lemma inj_mul p q : Z.pos (p*q) = Z.pos p * Z.pos q. Proof. reflexivity. Qed. Lemma inj_pow_pos p q : Z.pos (p^q) = Z.pow_pos (Z.pos p) q. Proof. now apply Pos.iter_swap_gen. Qed. Lemma inj_pow p q : Z.pos (p^q) = (Z.pos p)^(Z.pos q). Proof. apply inj_pow_pos. Qed. Lemma inj_square p : Z.pos (Pos.square p) = Z.square (Z.pos p). Proof. reflexivity. Qed. Lemma inj_compare p q : (p ?= q)%positive = (Z.pos p ?= Z.pos q). Proof. reflexivity. Qed. Lemma inj_leb p q : (p <=? q)%positive = (Z.pos p <=? Z.pos q). Proof. reflexivity. Qed. Lemma inj_ltb p q : (p (p|q)%positive. Proof. apply Z.Private_BootStrap.divide_Zpos. Qed. Lemma inj_testbit a n : 0<=n -> Z.testbit (Z.pos a) n = N.testbit (N.pos a) (Z.to_N n). Proof. apply Z.Private_BootStrap.testbit_Zpos. Qed. (** Some results concerning Z.neg *) Lemma inj_neg p q : Z.neg p = Z.neg q -> p = q. Proof. now injection 1. Qed. Lemma inj_neg_iff p q : Z.neg p = Z.neg q <-> p = q. Proof. split. apply inj_neg. intros; now f_equal. Qed. Lemma neg_is_neg p : Z.neg p < 0. Proof. reflexivity. Qed. Lemma neg_is_nonpos p : Z.neg p <= 0. Proof. easy. Qed. Lemma neg_xO p : Z.neg p~0 = 2 * Z.neg p. Proof. reflexivity. Qed. Lemma neg_xI p : Z.neg p~1 = 2 * Z.neg p - 1. Proof. reflexivity. Qed. Lemma opp_neg p : - Z.neg p = Z.pos p. Proof. reflexivity. Qed. Lemma opp_pos p : - Z.pos p = Z.neg p. Proof. reflexivity. Qed. Lemma add_neg_neg p q : Z.neg p + Z.neg q = Z.neg (p+q). Proof. reflexivity. Qed. Lemma add_pos_neg p q : Z.pos p + Z.neg q = Z.pos_sub p q. Proof. reflexivity. Qed. Lemma add_neg_pos p q : Z.neg p + Z.pos q = Z.pos_sub q p. Proof. reflexivity. Qed. Lemma divide_pos_neg_r n p : (n|Z.pos p) <-> (n|Z.neg p). Proof. apply Z.Private_BootStrap.divide_Zpos_Zneg_r. Qed. Lemma divide_pos_neg_l n p : (Z.pos p|n) <-> (Z.neg p|n). Proof. apply Z.Private_BootStrap.divide_Zpos_Zneg_l. Qed. Lemma testbit_neg a n : 0<=n -> Z.testbit (Z.neg a) n = negb (N.testbit (Pos.pred_N a) (Z.to_N n)). Proof. apply Z.Private_BootStrap.testbit_Zneg. Qed. End Pos2Z. Module Z2Pos. Lemma id x : 0 < x -> Z.pos (Z.to_pos x) = x. Proof. now destruct x. Qed. Lemma inj x y : 0 < x -> 0 < y -> Z.to_pos x = Z.to_pos y -> x = y. Proof. destruct x; simpl; try easy. intros _ H ->. now apply id. Qed. Lemma inj_iff x y : 0 < x -> 0 < y -> (Z.to_pos x = Z.to_pos y <-> x = y). Proof. split. now apply inj. intros; now f_equal. Qed. Lemma to_pos_nonpos x : x <= 0 -> Z.to_pos x = 1%positive. Proof. destruct x; trivial. now destruct 1. Qed. Lemma inj_1 : Z.to_pos 1 = 1%positive. Proof. reflexivity. Qed. Lemma inj_double x : 0 < x -> Z.to_pos (Z.double x) = (Z.to_pos x)~0%positive. Proof. now destruct x. Qed. Lemma inj_succ_double x : 0 < x -> Z.to_pos (Z.succ_double x) = (Z.to_pos x)~1%positive. Proof. now destruct x. Qed. Lemma inj_succ x : 0 < x -> Z.to_pos (Z.succ x) = Pos.succ (Z.to_pos x). Proof. destruct x; try easy. simpl. now rewrite Pos.add_1_r. Qed. Lemma inj_add x y : 0 < x -> 0 < y -> Z.to_pos (x+y) = (Z.to_pos x + Z.to_pos y)%positive. Proof. destruct x; easy || now destruct y. Qed. Lemma inj_sub x y : 0 < x < y -> Z.to_pos (y-x) = (Z.to_pos y - Z.to_pos x)%positive. Proof. destruct x; try easy. destruct y; try easy. simpl. intros. now rewrite Z.pos_sub_gt. Qed. Lemma inj_pred x : 1 < x -> Z.to_pos (Z.pred x) = Pos.pred (Z.to_pos x). Proof. now destruct x as [|[x|x|]|]. Qed. Lemma inj_mul x y : 0 < x -> 0 < y -> Z.to_pos (x*y) = (Z.to_pos x * Z.to_pos y)%positive. Proof. destruct x; easy || now destruct y. Qed. Lemma inj_pow x y : 0 < x -> 0 < y -> Z.to_pos (x^y) = (Z.to_pos x ^ Z.to_pos y)%positive. Proof. intros. apply Pos2Z.inj. rewrite Pos2Z.inj_pow, !id; trivial. apply Z.pow_pos_nonneg. trivial. now apply Z.lt_le_incl. Qed. Lemma inj_pow_pos x p : 0 < x -> Z.to_pos (Z.pow_pos x p) = ((Z.to_pos x)^p)%positive. Proof. intros. now apply (inj_pow x (Z.pos p)). Qed. Lemma inj_compare x y : 0 < x -> 0 < y -> (x ?= y) = (Z.to_pos x ?= Z.to_pos y)%positive. Proof. destruct x; easy || now destruct y. Qed. Lemma inj_leb x y : 0 < x -> 0 < y -> (x <=? y) = (Z.to_pos x <=? Z.to_pos y)%positive. Proof. destruct x; easy || now destruct y. Qed. Lemma inj_ltb x y : 0 < x -> 0 < y -> (x 0 < y -> (x =? y) = (Z.to_pos x =? Z.to_pos y)%positive. Proof. destruct x; easy || now destruct y. Qed. Lemma inj_max x y : Z.to_pos (Z.max x y) = Pos.max (Z.to_pos x) (Z.to_pos y). Proof. destruct x; simpl; try rewrite Pos.max_1_l. - now destruct y. - destruct y; simpl; now rewrite ?Pos.max_1_r, <- ?Pos2Z.inj_max. - destruct y; simpl; rewrite ?Pos.max_1_r; trivial. apply to_pos_nonpos. now apply Z.max_lub. Qed. Lemma inj_min x y : Z.to_pos (Z.min x y) = Pos.min (Z.to_pos x) (Z.to_pos y). Proof. destruct x; simpl; try rewrite Pos.min_1_l. - now destruct y. - destruct y; simpl; now rewrite ?Pos.min_1_r, <- ?Pos2Z.inj_min. - destruct y; simpl; rewrite ?Pos.min_1_r; trivial. apply to_pos_nonpos. apply Z.min_le_iff. now left. Qed. Lemma inj_sqrt x : Z.to_pos (Z.sqrt x) = Pos.sqrt (Z.to_pos x). Proof. now destruct x. Qed. Lemma inj_gcd x y : 0 < x -> 0 < y -> Z.to_pos (Z.gcd x y) = Pos.gcd (Z.to_pos x) (Z.to_pos y). Proof. destruct x; easy || now destruct y. Qed. End Z2Pos. (** Compatibility Notations *) Notation Zdouble_plus_one := Z.succ_double (compat "8.3"). Notation Zdouble_minus_one := Z.pred_double (compat "8.3"). Notation Zdouble := Z.double (compat "8.3"). Notation ZPminus := Z.pos_sub (compat "8.3"). Notation Zsucc' := Z.succ (compat "8.3"). Notation Zpred' := Z.pred (compat "8.3"). Notation Zplus' := Z.add (compat "8.3"). Notation Zplus := Z.add (compat "8.3"). (* Slightly incompatible *) Notation Zopp := Z.opp (compat "8.3"). Notation Zsucc := Z.succ (compat "8.3"). Notation Zpred := Z.pred (compat "8.3"). Notation Zminus := Z.sub (compat "8.3"). Notation Zmult := Z.mul (compat "8.3"). Notation Zcompare := Z.compare (compat "8.3"). Notation Zsgn := Z.sgn (compat "8.3"). Notation Zle := Z.le (compat "8.3"). Notation Zge := Z.ge (compat "8.3"). Notation Zlt := Z.lt (compat "8.3"). Notation Zgt := Z.gt (compat "8.3"). Notation Zmax := Z.max (compat "8.3"). Notation Zmin := Z.min (compat "8.3"). Notation Zabs := Z.abs (compat "8.3"). Notation Zabs_nat := Z.abs_nat (compat "8.3"). Notation Zabs_N := Z.abs_N (compat "8.3"). Notation Z_of_nat := Z.of_nat (compat "8.3"). Notation Z_of_N := Z.of_N (compat "8.3"). Notation Zind := Z.peano_ind (compat "8.3"). Notation Zopp_0 := Z.opp_0 (compat "8.3"). Notation Zopp_involutive := Z.opp_involutive (compat "8.3"). Notation Zopp_inj := Z.opp_inj (compat "8.3"). Notation Zplus_0_l := Z.add_0_l (compat "8.3"). Notation Zplus_0_r := Z.add_0_r (compat "8.3"). Notation Zplus_comm := Z.add_comm (compat "8.3"). Notation Zopp_plus_distr := Z.opp_add_distr (compat "8.3"). Notation Zopp_succ := Z.opp_succ (compat "8.3"). Notation Zplus_opp_r := Z.add_opp_diag_r (compat "8.3"). Notation Zplus_opp_l := Z.add_opp_diag_l (compat "8.3"). Notation Zplus_assoc := Z.add_assoc (compat "8.3"). Notation Zplus_permute := Z.add_shuffle3 (compat "8.3"). Notation Zplus_reg_l := Z.add_reg_l (compat "8.3"). Notation Zplus_succ_l := Z.add_succ_l (compat "8.3"). Notation Zplus_succ_comm := Z.add_succ_comm (compat "8.3"). Notation Zsucc_discr := Z.neq_succ_diag_r (compat "8.3"). Notation Zsucc_inj := Z.succ_inj (compat "8.3"). Notation Zsucc'_inj := Z.succ_inj (compat "8.3"). Notation Zsucc'_pred' := Z.succ_pred (compat "8.3"). Notation Zpred'_succ' := Z.pred_succ (compat "8.3"). Notation Zpred'_inj := Z.pred_inj (compat "8.3"). Notation Zsucc'_discr := Z.neq_succ_diag_r (compat "8.3"). Notation Zminus_0_r := Z.sub_0_r (compat "8.3"). Notation Zminus_diag := Z.sub_diag (compat "8.3"). Notation Zminus_plus_distr := Z.sub_add_distr (compat "8.3"). Notation Zminus_succ_r := Z.sub_succ_r (compat "8.3"). Notation Zminus_plus := Z.add_simpl_l (compat "8.3"). Notation Zmult_0_l := Z.mul_0_l (compat "8.3"). Notation Zmult_0_r := Z.mul_0_r (compat "8.3"). Notation Zmult_1_l := Z.mul_1_l (compat "8.3"). Notation Zmult_1_r := Z.mul_1_r (compat "8.3"). Notation Zmult_comm := Z.mul_comm (compat "8.3"). Notation Zmult_assoc := Z.mul_assoc (compat "8.3"). Notation Zmult_permute := Z.mul_shuffle3 (compat "8.3"). Notation Zmult_1_inversion_l := Z.mul_eq_1 (compat "8.3"). Notation Zdouble_mult := Z.double_spec (compat "8.3"). Notation Zdouble_plus_one_mult := Z.succ_double_spec (compat "8.3"). Notation Zopp_mult_distr_l_reverse := Z.mul_opp_l (compat "8.3"). Notation Zmult_opp_opp := Z.mul_opp_opp (compat "8.3"). Notation Zmult_opp_comm := Z.mul_opp_comm (compat "8.3"). Notation Zopp_eq_mult_neg_1 := Z.opp_eq_mul_m1 (compat "8.3"). Notation Zmult_plus_distr_r := Z.mul_add_distr_l (compat "8.3"). Notation Zmult_plus_distr_l := Z.mul_add_distr_r (compat "8.3"). Notation Zmult_minus_distr_r := Z.mul_sub_distr_r (compat "8.3"). Notation Zmult_reg_l := Z.mul_reg_l (compat "8.3"). Notation Zmult_reg_r := Z.mul_reg_r (compat "8.3"). Notation Zmult_succ_l := Z.mul_succ_l (compat "8.3"). Notation Zmult_succ_r := Z.mul_succ_r (compat "8.3"). Notation Zpos_xI := Pos2Z.inj_xI (compat "8.3"). Notation Zpos_xO := Pos2Z.inj_xO (compat "8.3"). Notation Zneg_xI := Pos2Z.neg_xI (compat "8.3"). Notation Zneg_xO := Pos2Z.neg_xO (compat "8.3"). Notation Zopp_neg := Pos2Z.opp_neg (compat "8.3"). Notation Zpos_succ_morphism := Pos2Z.inj_succ (compat "8.3"). Notation Zpos_mult_morphism := Pos2Z.inj_mul (compat "8.3"). Notation Zpos_minus_morphism := Pos2Z.inj_sub (compat "8.3"). Notation Zpos_eq_rev := Pos2Z.inj (compat "8.3"). Notation Zpos_plus_distr := Pos2Z.inj_add (compat "8.3"). Notation Zneg_plus_distr := Pos2Z.add_neg_neg (compat "8.3"). Notation Z := Z (only parsing). Notation Z_rect := Z_rect (only parsing). Notation Z_rec := Z_rec (only parsing). Notation Z_ind := Z_ind (only parsing). Notation Z0 := Z0 (only parsing). Notation Zpos := Zpos (only parsing). Notation Zneg := Zneg (only parsing). (** Compatibility lemmas. These could be notations, but scope information would be lost. *) Notation SYM1 lem := (fun n => eq_sym (lem n)). Notation SYM2 lem := (fun n m => eq_sym (lem n m)). Notation SYM3 lem := (fun n m p => eq_sym (lem n m p)). Lemma Zplus_assoc_reverse : forall n m p, n+m+p = n+(m+p). Proof (SYM3 Z.add_assoc). Lemma Zplus_succ_r_reverse : forall n m, Z.succ (n+m) = n+Z.succ m. Proof (SYM2 Z.add_succ_r). Notation Zplus_succ_r := Zplus_succ_r_reverse (only parsing). Lemma Zplus_0_r_reverse : forall n, n = n + 0. Proof (SYM1 Z.add_0_r). Lemma Zplus_eq_compat : forall n m p q, n=m -> p=q -> n+p=m+q. Proof (f_equal2 Z.add). Lemma Zsucc_pred : forall n, n = Z.succ (Z.pred n). Proof (SYM1 Z.succ_pred). Lemma Zpred_succ : forall n, n = Z.pred (Z.succ n). Proof (SYM1 Z.pred_succ). Lemma Zsucc_eq_compat : forall n m, n = m -> Z.succ n = Z.succ m. Proof (f_equal Z.succ). Lemma Zminus_0_l_reverse : forall n, n = n - 0. Proof (SYM1 Z.sub_0_r). Lemma Zminus_diag_reverse : forall n, 0 = n-n. Proof (SYM1 Z.sub_diag). Lemma Zminus_succ_l : forall n m, Z.succ (n - m) = Z.succ n - m. Proof (SYM2 Z.sub_succ_l). Lemma Zplus_minus_eq : forall n m p, n = m + p -> p = n - m. Proof. intros. now apply Z.add_move_l. Qed. Lemma Zplus_minus : forall n m, n + (m - n) = m. Proof (fun n m => eq_trans (Z.add_comm n (m-n)) (Z.sub_add n m)). Lemma Zminus_plus_simpl_l : forall n m p, p + n - (p + m) = n - m. Proof (fun n m p => Z.add_add_simpl_l_l p n m). Lemma Zminus_plus_simpl_l_reverse : forall n m p, n - m = p + n - (p + m). Proof (SYM3 Zminus_plus_simpl_l). Lemma Zminus_plus_simpl_r : forall n m p, n + p - (m + p) = n - m. Proof (fun n m p => Z.add_add_simpl_r_r n p m). Lemma Zeq_minus : forall n m, n = m -> n - m = 0. Proof (fun n m => proj2 (Z.sub_move_0_r n m)). Lemma Zminus_eq : forall n m, n - m = 0 -> n = m. Proof (fun n m => proj1 (Z.sub_move_0_r n m)). Lemma Zmult_0_r_reverse : forall n, 0 = n * 0. Proof (SYM1 Z.mul_0_r). Lemma Zmult_assoc_reverse : forall n m p, n * m * p = n * (m * p). Proof (SYM3 Z.mul_assoc). Lemma Zmult_integral : forall n m, n * m = 0 -> n = 0 \/ m = 0. Proof (fun n m => proj1 (Z.mul_eq_0 n m)). Lemma Zmult_integral_l : forall n m, n <> 0 -> m * n = 0 -> m = 0. Proof (fun n m H H' => Z.mul_eq_0_l m n H' H). Lemma Zopp_mult_distr_l : forall n m, - (n * m) = - n * m. Proof (SYM2 Z.mul_opp_l). Lemma Zopp_mult_distr_r : forall n m, - (n * m) = n * - m. Proof (SYM2 Z.mul_opp_r). Lemma Zmult_minus_distr_l : forall n m p, p * (n - m) = p * n - p * m. Proof (fun n m p => Z.mul_sub_distr_l p n m). Lemma Zmult_succ_r_reverse : forall n m, n * m + n = n * Z.succ m. Proof (SYM2 Z.mul_succ_r). Lemma Zmult_succ_l_reverse : forall n m, n * m + m = Z.succ n * m. Proof (SYM2 Z.mul_succ_l). Lemma Zpos_eq : forall p q, p = q -> Z.pos p = Z.pos q. Proof. congruence. Qed. Lemma Zpos_eq_iff : forall p q, p = q <-> Z.pos p = Z.pos q. Proof (fun p q => iff_sym (Pos2Z.inj_iff p q)). Hint Immediate Zsucc_pred: zarith. (* Not kept : Zplus_0_simpl_l Zplus_0_simpl_l_reverse Zplus_opp_expand Zsucc_inj_contrapositive Zsucc_succ' Zpred_pred' *) (* No compat notation for : weak_assoc (now Z.add_assoc_pos) weak_Zmult_plus_distr_r (now Z.mul_add_distr_pos) *) (** Obsolete stuff *) Definition Zne (x y:Z) := x <> y. (* TODO : to remove someday ? *) Ltac elim_compare com1 com2 := case (Dcompare (com1 ?= com2)%Z); [ idtac | let x := fresh "H" in (intro x; case x; clear x) ]. Lemma ZL0 : 2%nat = (1 + 1)%nat. Proof. reflexivity. Qed. Lemma Zplus_diag_eq_mult_2 n : n + n = n * 2. Proof. rewrite Z.mul_comm. apply Z.add_diag. Qed. Lemma Z_eq_mult n m : m = 0 -> m * n = 0. Proof. intros; now subst. Qed.