(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* B -> Prop. Variable f : A -> B. Let Rof (x y:A) : Prop := R (f x) (f y). Remark Acc_lemma : forall y:B, Acc R y -> forall x:A, y = f x -> Acc Rof x. Proof. induction 1 as [y _ IHAcc]; intros x H. apply Acc_intro; intros y0 H1. apply (IHAcc (f y0)); try trivial. rewrite H; trivial. Qed. Lemma Acc_inverse_image : forall x:A, Acc R (f x) -> Acc Rof x. Proof. intros; apply (Acc_lemma (f x)); trivial. Qed. Theorem wf_inverse_image : well_founded R -> well_founded Rof. Proof. red; intros; apply Acc_inverse_image; auto. Qed. Variable F : A -> B -> Prop. Let RoF (x y:A) : Prop := exists2 b : B, F x b & (forall c:B, F y c -> R b c). Lemma Acc_inverse_rel : forall b:B, Acc R b -> forall x:A, F x b -> Acc RoF x. Proof. induction 1 as [x _ IHAcc]; intros x0 H2. constructor; intros y H3. destruct H3. apply (IHAcc x1); auto. Qed. Theorem wf_inverse_rel : well_founded R -> well_founded RoF. Proof. red; constructor; intros. case H0; intros. apply (Acc_inverse_rel x); auto. Qed. End Inverse_Image.