(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* fun v1' => a1 = a2' /\ v1' = v2') x v1 with | eq_refl => conj eq_refl eq_refl end. Lemma eta {A} {n} (v : t A (S n)) : v = hd v :: tl v. Proof. intros; apply caseS with (v:=v); intros; reflexivity. Defined. (** Lemmas are done for functions that use [Fin.t] but thanks to [Peano_dec.le_unique], all is true for the one that use [lt] *) Lemma eq_nth_iff A n (v1 v2: t A n): (forall p1 p2, p1 = p2 -> v1 [@ p1 ] = v2 [@ p2 ]) <-> v1 = v2. Proof. split. - revert n v1 v2; refine (@rect2 _ _ _ _ _); simpl; intros. + reflexivity. + f_equal. apply (H0 Fin.F1 Fin.F1 eq_refl). apply H. intros p1 p2 H1; apply (H0 (Fin.FS p1) (Fin.FS p2) (f_equal (@Fin.FS n) H1)). - intros; now f_equal. Qed. Lemma nth_order_last A: forall n (v: t A (S n)) (H: n < S n), nth_order v H = last v. Proof. unfold nth_order; refine (@rectS _ _ _ _); now simpl. Qed. Lemma shiftin_nth A a n (v: t A n) k1 k2 (eq: k1 = k2): nth (shiftin a v) (Fin.L_R 1 k1) = nth v k2. Proof. subst k2; induction k1. - generalize dependent n. apply caseS ; intros. now simpl. - generalize dependent n. refine (@caseS _ _ _) ; intros. now simpl. Qed. Lemma shiftin_last A a n (v: t A n): last (shiftin a v) = a. Proof. induction v ;now simpl. Qed. Lemma shiftrepeat_nth A: forall n k (v: t A (S n)), nth (shiftrepeat v) (Fin.L_R 1 k) = nth v k. Proof. refine (@Fin.rectS _ _ _); lazy beta; [ intros n v | intros n p H v ]. - revert n v; refine (@caseS _ _ _); simpl; intros. now destruct t. - revert p H. refine (match v as v' in t _ m return match m as m' return t A m' -> Prop with |S (S n) => fun v => forall p : Fin.t (S n), (forall v0 : t A (S n), (shiftrepeat v0) [@ Fin.L_R 1 p ] = v0 [@p]) -> (shiftrepeat v) [@Fin.L_R 1 (Fin.FS p)] = v [@Fin.FS p] |_ => fun _ => True end v' with |[] => I |h :: t => _ end). destruct n0. exact I. now simpl. Qed. Lemma shiftrepeat_last A: forall n (v: t A (S n)), last (shiftrepeat v) = last v. Proof. refine (@rectS _ _ _ _); now simpl. Qed. Lemma const_nth A (a: A) n (p: Fin.t n): (const a n)[@ p] = a. Proof. now induction p. Qed. Lemma nth_map {A B} (f: A -> B) {n} v (p1 p2: Fin.t n) (eq: p1 = p2): (map f v) [@ p1] = f (v [@ p2]). Proof. subst p2; induction p1. - revert n v; refine (@caseS _ _ _); now simpl. - revert n v p1 IHp1; refine (@caseS _ _ _); now simpl. Qed. Lemma nth_map2 {A B C} (f: A -> B -> C) {n} v w (p1 p2 p3: Fin.t n): p1 = p2 -> p2 = p3 -> (map2 f v w) [@p1] = f (v[@p2]) (w[@p3]). Proof. intros; subst p2; subst p3; revert n v w p1. refine (@rect2 _ _ _ _ _); simpl. - exact (Fin.case0 _). - intros n v1 v2 H a b p; revert n p v1 v2 H; refine (@Fin.caseS _ _ _); now simpl. Qed. Lemma fold_left_right_assoc_eq {A B} {f: A -> B -> A} (assoc: forall a b c, f (f a b) c = f (f a c) b) {n} (v: t B n): forall a, fold_left f a v = fold_right (fun x y => f y x) v a. Proof. assert (forall n h (v: t B n) a, fold_left f (f a h) v = f (fold_left f a v) h). - induction v0. + now simpl. + intros; simpl. rewrite<- IHv0, assoc. now f_equal. - induction v. + reflexivity. + simpl. intros; now rewrite<- (IHv). Qed. Lemma to_list_of_list_opp {A} (l: list A): to_list (of_list l) = l. Proof. induction l. - reflexivity. - unfold to_list; simpl. now f_equal. Qed. Lemma take_O : forall {A} {n} le (v:t A n), take 0 le v = []. Proof. reflexivity. Qed. Lemma take_idem : forall {A} p n (v:t A n) le le', take p le' (take p le v) = take p le v. Proof. induction p; intros n v le le'. - auto. - destruct v. inversion le. simpl. apply f_equal. apply IHp. Qed. Lemma take_app : forall {A} {n} (v:t A n) {m} (w:t A m) le, take n le (append v w) = v. Proof. induction v; intros m w le. - reflexivity. - simpl. apply f_equal. apply IHv. Qed. (* Proof is irrelevant for [take] *) Lemma take_prf_irr : forall {A} p {n} (v:t A n) le le', take p le v = take p le' v. Proof. induction p; intros n v le le'. - reflexivity. - destruct v. inversion le. simpl. apply f_equal. apply IHp. Qed.