(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* Set := |F1 : forall {n}, t (S n) |FS : forall {n}, t n -> t (S n). Section SCHEMES. Definition case0 P (p: t 0): P p := match p with | F1 | FS _ => fun devil => False_rect (@IDProp) devil (* subterm !!! *) end. Definition caseS' {n : nat} (p : t (S n)) : forall (P : t (S n) -> Type) (P1 : P F1) (PS : forall (p : t n), P (FS p)), P p := match p with | @F1 k => fun P P1 PS => P1 | FS pp => fun P P1 PS => PS pp end. Definition caseS (P: forall {n}, t (S n) -> Type) (P1: forall n, @P n F1) (PS : forall {n} (p: t n), P (FS p)) {n} (p: t (S n)) : P p := caseS' p P (P1 n) PS. Definition rectS (P: forall {n}, t (S n) -> Type) (P1: forall n, @P n F1) (PS : forall {n} (p: t (S n)), P p -> P (FS p)): forall {n} (p: t (S n)), P p := fix rectS_fix {n} (p: t (S n)): P p:= match p with | @F1 k => P1 k | @FS 0 pp => case0 (fun f => P (FS f)) pp | @FS (S k) pp => PS pp (rectS_fix pp) end. Definition rect2 (P : forall {n} (a b : t n), Type) (H0 : forall n, @P (S n) F1 F1) (H1 : forall {n} (f : t n), P F1 (FS f)) (H2 : forall {n} (f : t n), P (FS f) F1) (HS : forall {n} (f g : t n), P f g -> P (FS f) (FS g)) : forall {n} (a b : t n), P a b := fix rect2_fix {n} (a : t n) {struct a} : forall (b : t n), P a b := match a with | @F1 m => fun (b : t (S m)) => caseS' b (P F1) (H0 _) H1 | @FS m a' => fun (b : t (S m)) => caseS' b (fun b => P (@FS m a') b) (H2 a') (fun b' => HS _ _ (rect2_fix a' b')) end. End SCHEMES. Definition FS_inj {n} (x y: t n) (eq: FS x = FS y): x = y := match eq in _ = a return match a as a' in t m return match m with |0 => Prop |S n' => t n' -> Prop end with F1 => fun _ => True |FS y => fun x' => x' = y end x with eq_refl => eq_refl end. (** [to_nat f] = p iff [f] is the p{^ th} element of [fin m]. *) Fixpoint to_nat {m} (n : t m) : {i | i < m} := match n with |@F1 j => exist _ 0 (Lt.lt_0_Sn j) |FS p => match to_nat p with |exist _ i P => exist _ (S i) (Lt.lt_n_S _ _ P) end end. (** [of_nat p n] answers the p{^ th} element of [fin n] if p < n or a proof of p >= n else *) Fixpoint of_nat (p n : nat) : (t n) + { exists m, p = n + m } := match n with |0 => inright _ (ex_intro _ p eq_refl) |S n' => match p with |0 => inleft _ (F1) |S p' => match of_nat p' n' with |inleft f => inleft _ (FS f) |inright arg => inright _ (match arg with |ex_intro _ m e => ex_intro (fun x => S p' = S n' + x) m (f_equal S e) end) end end end. (** [of_nat_lt p n H] answers the p{^ th} element of [fin n] it behaves much better than [of_nat p n] on open term *) Fixpoint of_nat_lt {p n : nat} : p < n -> t n := match n with |0 => fun H : p < 0 => False_rect _ (Lt.lt_n_O p H) |S n' => match p with |0 => fun _ => @F1 n' |S p' => fun H => FS (of_nat_lt (Lt.lt_S_n _ _ H)) end end. Lemma of_nat_ext {p}{n} (h h' : p < n) : of_nat_lt h = of_nat_lt h'. Proof. now rewrite (Peano_dec.le_unique _ _ h h'). Qed. Lemma of_nat_to_nat_inv {m} (p : t m) : of_nat_lt (proj2_sig (to_nat p)) = p. Proof. induction p; simpl. - reflexivity. - destruct (to_nat p); simpl in *. f_equal. subst p. apply of_nat_ext. Qed. Lemma to_nat_of_nat {p}{n} (h : p < n) : to_nat (of_nat_lt h) = exist _ p h. Proof. revert n h. induction p; (destruct n ; intros h; [ destruct (Lt.lt_n_O _ h) | cbn]); [ | rewrite (IHp _ (Lt.lt_S_n p n h))]; f_equal; apply Peano_dec.le_unique. Qed. Lemma to_nat_inj {n} (p q : t n) : proj1_sig (to_nat p) = proj1_sig (to_nat q) -> p = q. Proof. intro H. rewrite <- (of_nat_to_nat_inv p), <- (of_nat_to_nat_inv q). destruct (to_nat p) as (np,hp), (to_nat q) as (nq,hq); simpl in *. revert hp hq. rewrite H. apply of_nat_ext. Qed. (** [weak p f] answers a function witch is the identity for the p{^ th} first element of [fin (p + m)] and [FS (FS .. (FS (f k)))] for [FS (FS .. (FS k))] with p FSs *) Fixpoint weak {m}{n} p (f : t m -> t n) : t (p + m) -> t (p + n) := match p as p' return t (p' + m) -> t (p' + n) with |0 => f |S p' => fun x => match x with |@F1 n' => fun eq : n' = p' + m => F1 |@FS n' y => fun eq : n' = p' + m => FS (weak p' f (eq_rect _ t y _ eq)) end (eq_refl _) end. (** The p{^ th} element of [fin m] viewed as the p{^ th} element of [fin (m + n)] *) Fixpoint L {m} n (p : t m) : t (m + n) := match p with |F1 => F1 |FS p' => FS (L n p') end. Lemma L_sanity {m} n (p : t m) : proj1_sig (to_nat (L n p)) = proj1_sig (to_nat p). Proof. induction p. - reflexivity. - simpl; destruct (to_nat (L n p)); simpl in *; rewrite IHp. now destruct (to_nat p). Qed. (** The p{^ th} element of [fin m] viewed as the p{^ th} element of [fin (n + m)] Really really ineficient !!! *) Definition L_R {m} n (p : t m) : t (n + m). Proof. induction n. - exact p. - exact ((fix LS k (p: t k) := match p with |@F1 k' => @F1 (S k') |FS p' => FS (LS _ p') end) _ IHn). Defined. (** The p{^ th} element of [fin m] viewed as the (n + p){^ th} element of [fin (n + m)] *) Fixpoint R {m} n (p : t m) : t (n + m) := match n with |0 => p |S n' => FS (R n' p) end. Lemma R_sanity {m} n (p : t m) : proj1_sig (to_nat (R n p)) = n + proj1_sig (to_nat p). Proof. induction n. - reflexivity. - simpl; destruct (to_nat (R n p)); simpl in *; rewrite IHn. now destruct (to_nat p). Qed. Fixpoint depair {m n} (o : t m) (p : t n) : t (m * n) := match o with |@F1 m' => L (m' * n) p |FS o' => R n (depair o' p) end. Lemma depair_sanity {m n} (o : t m) (p : t n) : proj1_sig (to_nat (depair o p)) = n * (proj1_sig (to_nat o)) + (proj1_sig (to_nat p)). Proof. induction o ; simpl. - rewrite L_sanity. now rewrite Mult.mult_0_r. - rewrite R_sanity. rewrite IHo. rewrite Plus.plus_assoc. destruct (to_nat o); simpl; rewrite Mult.mult_succ_r. now rewrite (Plus.plus_comm n). Qed. Fixpoint eqb {m n} (p : t m) (q : t n) := match p, q with | @F1 m', @F1 n' => EqNat.beq_nat m' n' | FS _, F1 => false | F1, FS _ => false | FS p', FS q' => eqb p' q' end. Lemma eqb_nat_eq : forall m n (p : t m) (q : t n), eqb p q = true -> m = n. Proof. intros m n p; revert n; induction p; destruct q; simpl; intros; f_equal. - now apply EqNat.beq_nat_true. - easy. - easy. - eapply IHp. eassumption. Qed. Lemma eqb_eq : forall n (p q : t n), eqb p q = true <-> p = q. Proof. apply rect2; simpl; intros. - split; intros ; [ reflexivity | now apply EqNat.beq_nat_true_iff ]. - now split. - now split. - eapply iff_trans. + eassumption. + split. * intros; now f_equal. * apply FS_inj. Qed. Lemma eq_dec {n} (x y : t n): {x = y} + {x <> y}. Proof. case_eq (eqb x y); intros. - left; now apply eqb_eq. - right. intros Heq. apply <- eqb_eq in Heq. congruence. Defined. Definition cast: forall {m} (v: t m) {n}, m = n -> t n. Proof. refine (fix cast {m} (v: t m) {struct v} := match v in t m' return forall n, m' = n -> t n with |F1 => fun n => match n with | 0 => fun H => False_rect _ _ | S n' => fun H => F1 end |FS f => fun n => match n with | 0 => fun H => False_rect _ _ | S n' => fun H => FS (cast f n' (f_equal pred H)) end end); discriminate. Defined.