(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* split. (* eqke is stricter than eqk *) Lemma eqke_eqk : forall x x', eqke x x' -> eqk x x'. Proof. unfold eqk, eqke; intuition. Qed. (* eqk, eqke are equalities *) Lemma eqk_refl : forall e, eqk e e. Proof. auto. Qed. Lemma eqke_refl : forall e, eqke e e. Proof. auto. Qed. Lemma eqk_sym : forall e e', eqk e e' -> eqk e' e. Proof. auto. Qed. Lemma eqke_sym : forall e e', eqke e e' -> eqke e' e. Proof. unfold eqke; intuition. Qed. Lemma eqk_trans : forall e e' e'', eqk e e' -> eqk e' e'' -> eqk e e''. Proof. eauto. Qed. Lemma eqke_trans : forall e e' e'', eqke e e' -> eqke e' e'' -> eqke e e''. Proof. unfold eqke; intuition; [ eauto | congruence ]. Qed. Hint Resolve eqk_trans eqke_trans eqk_refl eqke_refl. Hint Immediate eqk_sym eqke_sym. Global Instance eqk_equiv : Equivalence eqk. Proof. split; eauto. Qed. Global Instance eqke_equiv : Equivalence eqke. Proof. split; eauto. Qed. Lemma InA_eqke_eqk : forall x m, InA eqke x m -> InA eqk x m. Proof. unfold eqke; induction 1; intuition. Qed. Hint Resolve InA_eqke_eqk. Lemma InA_eqk : forall p q m, eqk p q -> InA eqk p m -> InA eqk q m. Proof. intros; apply InA_eqA with p; auto using eqk_equiv. Qed. Definition MapsTo (k:key)(e:elt):= InA eqke (k,e). Definition In k m := exists e:elt, MapsTo k e m. Hint Unfold MapsTo In. (* An alternative formulation for [In k l] is [exists e, InA eqk (k,e) l] *) Lemma In_alt : forall k l, In k l <-> exists e, InA eqk (k,e) l. Proof. firstorder. exists x; auto. induction H. destruct y. exists e; auto. destruct IHInA as [e H0]. exists e; auto. Qed. Lemma MapsTo_eq : forall l x y e, eq x y -> MapsTo x e l -> MapsTo y e l. Proof. intros; unfold MapsTo in *; apply InA_eqA with (x,e); auto using eqke_equiv. Qed. Lemma In_eq : forall l x y, eq x y -> In x l -> In y l. Proof. destruct 2 as (e,E); exists e; eapply MapsTo_eq; eauto. Qed. Lemma In_inv : forall k k' e l, In k ((k',e) :: l) -> eq k k' \/ In k l. Proof. inversion 1. inversion_clear H0; eauto. destruct H1; simpl in *; intuition. Qed. Lemma In_inv_2 : forall k k' e e' l, InA eqk (k, e) ((k', e') :: l) -> ~ eq k k' -> InA eqk (k, e) l. Proof. inversion_clear 1; compute in H0; intuition. Qed. Lemma In_inv_3 : forall x x' l, InA eqke x (x' :: l) -> ~ eqk x x' -> InA eqke x l. Proof. inversion_clear 1; compute in H0; intuition. Qed. End Elt. Hint Unfold eqk eqke. Hint Extern 2 (eqke ?a ?b) => split. Hint Resolve eqk_trans eqke_trans eqk_refl eqke_refl. Hint Immediate eqk_sym eqke_sym. Hint Resolve InA_eqke_eqk. Hint Unfold MapsTo In. Hint Resolve In_inv_2 In_inv_3. End KeyDecidableType.