(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* list A -> Prop := | perm_nil: Permutation [] [] | perm_skip x l l' : Permutation l l' -> Permutation (x::l) (x::l') | perm_swap x y l : Permutation (y::x::l) (x::y::l) | perm_trans l l' l'' : Permutation l l' -> Permutation l' l'' -> Permutation l l''. Local Hint Constructors Permutation. (** Some facts about [Permutation] *) Theorem Permutation_nil : forall (l : list A), Permutation [] l -> l = []. Proof. intros l HF. remember (@nil A) as m in HF. induction HF; discriminate || auto. Qed. Theorem Permutation_nil_cons : forall (l : list A) (x : A), ~ Permutation nil (x::l). Proof. intros l x HF. apply Permutation_nil in HF; discriminate. Qed. (** Permutation over lists is a equivalence relation *) Theorem Permutation_refl : forall l : list A, Permutation l l. Proof. induction l; constructor. exact IHl. Qed. Theorem Permutation_sym : forall l l' : list A, Permutation l l' -> Permutation l' l. Proof. intros l l' Hperm; induction Hperm; auto. apply perm_trans with (l':=l'); assumption. Qed. Theorem Permutation_trans : forall l l' l'' : list A, Permutation l l' -> Permutation l' l'' -> Permutation l l''. Proof. exact perm_trans. Qed. End Permutation. Hint Resolve Permutation_refl perm_nil perm_skip. (* These hints do not reduce the size of the problem to solve and they must be used with care to avoid combinatoric explosions *) Local Hint Resolve perm_swap perm_trans. Local Hint Resolve Permutation_sym Permutation_trans. (* This provides reflexivity, symmetry and transitivity and rewriting on morphims to come *) Instance Permutation_Equivalence A : Equivalence (@Permutation A) | 10 := { Equivalence_Reflexive := @Permutation_refl A ; Equivalence_Symmetric := @Permutation_sym A ; Equivalence_Transitive := @Permutation_trans A }. Instance Permutation_cons A : Proper (Logic.eq ==> @Permutation A ==> @Permutation A) (@cons A) | 10. Proof. repeat intro; subst; auto using perm_skip. Qed. Section Permutation_properties. Variable A:Type. Implicit Types a b : A. Implicit Types l m : list A. (** Compatibility with others operations on lists *) Theorem Permutation_in : forall (l l' : list A) (x : A), Permutation l l' -> In x l -> In x l'. Proof. intros l l' x Hperm; induction Hperm; simpl; tauto. Qed. Global Instance Permutation_in' : Proper (Logic.eq ==> @Permutation A ==> iff) (@In A) | 10. Proof. repeat red; intros; subst; eauto using Permutation_in. Qed. Lemma Permutation_app_tail : forall (l l' tl : list A), Permutation l l' -> Permutation (l++tl) (l'++tl). Proof. intros l l' tl Hperm; induction Hperm as [|x l l'|x y l|l l' l'']; simpl; auto. eapply Permutation_trans with (l':=l'++tl); trivial. Qed. Lemma Permutation_app_head : forall (l tl tl' : list A), Permutation tl tl' -> Permutation (l++tl) (l++tl'). Proof. intros l tl tl' Hperm; induction l; [trivial | repeat rewrite <- app_comm_cons; constructor; assumption]. Qed. Theorem Permutation_app : forall (l m l' m' : list A), Permutation l l' -> Permutation m m' -> Permutation (l++m) (l'++m'). Proof. intros l m l' m' Hpermll' Hpermmm'; induction Hpermll' as [|x l l'|x y l|l l' l'']; repeat rewrite <- app_comm_cons; auto. apply Permutation_trans with (l' := (x :: y :: l ++ m)); [idtac | repeat rewrite app_comm_cons; apply Permutation_app_head]; trivial. apply Permutation_trans with (l' := (l' ++ m')); try assumption. apply Permutation_app_tail; assumption. Qed. Global Instance Permutation_app' : Proper (@Permutation A ==> @Permutation A ==> @Permutation A) (@app A) | 10. Proof. repeat intro; now apply Permutation_app. Qed. Lemma Permutation_add_inside : forall a (l l' tl tl' : list A), Permutation l l' -> Permutation tl tl' -> Permutation (l ++ a :: tl) (l' ++ a :: tl'). Proof. intros; apply Permutation_app; auto. Qed. Lemma Permutation_cons_append : forall (l : list A) x, Permutation (x :: l) (l ++ x :: nil). Proof. induction l; intros; auto. simpl. rewrite <- IHl; auto. Qed. Local Hint Resolve Permutation_cons_append. Theorem Permutation_app_comm : forall (l l' : list A), Permutation (l ++ l') (l' ++ l). Proof. induction l as [|x l]; simpl; intro l'. rewrite app_nil_r; trivial. rewrite IHl. rewrite app_comm_cons, Permutation_cons_append. now rewrite <- app_assoc. Qed. Local Hint Resolve Permutation_app_comm. Theorem Permutation_cons_app : forall (l l1 l2:list A) a, Permutation l (l1 ++ l2) -> Permutation (a :: l) (l1 ++ a :: l2). Proof. intros l l1 l2 a H. rewrite H. rewrite app_comm_cons, Permutation_cons_append. now rewrite <- app_assoc. Qed. Local Hint Resolve Permutation_cons_app. Theorem Permutation_middle : forall (l1 l2:list A) a, Permutation (a :: l1 ++ l2) (l1 ++ a :: l2). Proof. auto. Qed. Local Hint Resolve Permutation_middle. Theorem Permutation_rev : forall (l : list A), Permutation l (rev l). Proof. induction l as [| x l]; simpl; trivial. now rewrite IHl at 1. Qed. Global Instance Permutation_rev' : Proper (@Permutation A ==> @Permutation A) (@rev A) | 10. Proof. repeat intro; now rewrite <- 2 Permutation_rev. Qed. Theorem Permutation_length : forall (l l' : list A), Permutation l l' -> length l = length l'. Proof. intros l l' Hperm; induction Hperm; simpl; auto. now transitivity (length l'). Qed. Global Instance Permutation_length' : Proper (@Permutation A ==> Logic.eq) (@length A) | 10. Proof. exact Permutation_length. Qed. Theorem Permutation_ind_bis : forall P : list A -> list A -> Prop, P [] [] -> (forall x l l', Permutation l l' -> P l l' -> P (x :: l) (x :: l')) -> (forall x y l l', Permutation l l' -> P l l' -> P (y :: x :: l) (x :: y :: l')) -> (forall l l' l'', Permutation l l' -> P l l' -> Permutation l' l'' -> P l' l'' -> P l l'') -> forall l l', Permutation l l' -> P l l'. Proof. intros P Hnil Hskip Hswap Htrans. induction 1; auto. apply Htrans with (x::y::l); auto. apply Hswap; auto. induction l; auto. apply Hskip; auto. apply Hskip; auto. induction l; auto. eauto. Qed. Ltac break_list l x l' H := destruct l as [|x l']; simpl in *; injection H; intros; subst; clear H. Theorem Permutation_nil_app_cons : forall (l l' : list A) (x : A), ~ Permutation nil (l++x::l'). Proof. intros l l' x HF. apply Permutation_nil in HF. destruct l; discriminate. Qed. Theorem Permutation_app_inv : forall (l1 l2 l3 l4:list A) a, Permutation (l1++a::l2) (l3++a::l4) -> Permutation (l1++l2) (l3 ++ l4). Proof. intros l1 l2 l3 l4 a; revert l1 l2 l3 l4. set (P l l' := forall l1 l2 l3 l4, l=l1++a::l2 -> l'=l3++a::l4 -> Permutation (l1++l2) (l3++l4)). cut (forall l l', Permutation l l' -> P l l'). intros H; intros; eapply H; eauto. apply (Permutation_ind_bis P); unfold P; clear P. - (* nil *) intros; now destruct l1. - (* skip *) intros x l l' H IH; intros. break_list l1 b l1' H0; break_list l3 c l3' H1. auto. now rewrite H. now rewrite <- H. now rewrite (IH _ _ _ _ eq_refl eq_refl). - (* swap *) intros x y l l' Hp IH; intros. break_list l1 b l1' H; break_list l3 c l3' H0. auto. break_list l3' b l3'' H. auto. constructor. now rewrite Permutation_middle. break_list l1' c l1'' H1. auto. constructor. now rewrite Permutation_middle. break_list l3' d l3'' H; break_list l1' e l1'' H1. auto. rewrite perm_swap. constructor. now rewrite Permutation_middle. rewrite perm_swap. constructor. now rewrite Permutation_middle. now rewrite perm_swap, (IH _ _ _ _ eq_refl eq_refl). - (*trans*) intros. destruct (In_split a l') as (l'1,(l'2,H6)). rewrite <- H. subst l. apply in_or_app; right; red; auto. apply perm_trans with (l'1++l'2). apply (H0 _ _ _ _ H3 H6). apply (H2 _ _ _ _ H6 H4). Qed. Theorem Permutation_cons_inv l l' a : Permutation (a::l) (a::l') -> Permutation l l'. Proof. intro H; exact (Permutation_app_inv [] l [] l' a H). Qed. Theorem Permutation_cons_app_inv l l1 l2 a : Permutation (a :: l) (l1 ++ a :: l2) -> Permutation l (l1 ++ l2). Proof. intro H; exact (Permutation_app_inv [] l l1 l2 a H). Qed. Theorem Permutation_app_inv_l : forall l l1 l2, Permutation (l ++ l1) (l ++ l2) -> Permutation l1 l2. Proof. induction l; simpl; auto. intros. apply IHl. apply Permutation_cons_inv with a; auto. Qed. Theorem Permutation_app_inv_r : forall l l1 l2, Permutation (l1 ++ l) (l2 ++ l) -> Permutation l1 l2. Proof. induction l. intros l1 l2; do 2 rewrite app_nil_r; auto. intros. apply IHl. apply Permutation_app_inv with a; auto. Qed. Lemma Permutation_length_1_inv: forall a l, Permutation [a] l -> l = [a]. Proof. intros a l H; remember [a] as m in H. induction H; try (injection Heqm as -> ->; clear Heqm); discriminate || auto. apply Permutation_nil in H as ->; trivial. Qed. Lemma Permutation_length_1: forall a b, Permutation [a] [b] -> a = b. Proof. intros a b H. apply Permutation_length_1_inv in H; injection H as ->; trivial. Qed. Lemma Permutation_length_2_inv : forall a1 a2 l, Permutation [a1;a2] l -> l = [a1;a2] \/ l = [a2;a1]. Proof. intros a1 a2 l H; remember [a1;a2] as m in H. revert a1 a2 Heqm. induction H; intros; try (injection Heqm; intros; subst; clear Heqm); discriminate || (try tauto). apply Permutation_length_1_inv in H as ->; left; auto. apply IHPermutation1 in Heqm as [H1|H1]; apply IHPermutation2 in H1 as (); auto. Qed. Lemma Permutation_length_2 : forall a1 a2 b1 b2, Permutation [a1;a2] [b1;b2] -> a1 = b1 /\ a2 = b2 \/ a1 = b2 /\ a2 = b1. Proof. intros a1 b1 a2 b2 H. apply Permutation_length_2_inv in H as [H|H]; injection H as -> ->; auto. Qed. Let in_middle l l1 l2 (a:A) : l = l1 ++ a :: l2 -> forall x, In x l <-> a = x \/ In x (l1++l2). Proof. intros; subst; rewrite !in_app_iff; simpl. tauto. Qed. Lemma NoDup_cardinal_incl (l l' : list A) : NoDup l -> NoDup l' -> length l = length l' -> incl l l' -> incl l' l. Proof. intros N. revert l'. induction N as [|a l Hal Hl IH]. - destruct l'; now auto. - intros l' Hl' E H x Hx. assert (Ha : In a l') by (apply H; simpl; auto). destruct (in_split _ _ Ha) as (l1 & l2 & H12). clear Ha. rewrite in_middle in Hx; eauto. destruct Hx as [Hx|Hx]; [left|right]; auto. apply (IH (l1++l2)); auto. * apply NoDup_remove_1 with a; rewrite <- H12; auto. * apply eq_add_S. simpl in E; rewrite E, H12, !app_length; simpl; auto with arith. * intros y Hy. assert (Hy' : In y l') by (apply H; simpl; auto). rewrite in_middle in Hy'; eauto. destruct Hy'; auto. subst y; intuition. Qed. Lemma NoDup_Permutation l l' : NoDup l -> NoDup l' -> (forall x:A, In x l <-> In x l') -> Permutation l l'. Proof. intros N. revert l'. induction N as [|a l Hal Hl IH]. - destruct l'; simpl; auto. intros Hl' H. exfalso. rewrite (H a); auto. - intros l' Hl' H. assert (Ha : In a l') by (apply H; simpl; auto). destruct (In_split _ _ Ha) as (l1 & l2 & H12). rewrite H12. apply Permutation_cons_app. apply IH; auto. * apply NoDup_remove_1 with a; rewrite <- H12; auto. * intro x. split; intros Hx. + assert (Hx' : In x l') by (apply H; simpl; auto). rewrite in_middle in Hx'; eauto. destruct Hx'; auto. subst; intuition. + assert (Hx' : In x l') by (rewrite (in_middle l1 l2 a); eauto). rewrite <- H in Hx'. destruct Hx'; auto. subst. destruct (NoDup_remove_2 _ _ _ Hl' Hx). Qed. Lemma NoDup_Permutation_bis l l' : NoDup l -> NoDup l' -> length l = length l' -> incl l l' -> Permutation l l'. Proof. intros. apply NoDup_Permutation; auto. split; auto. apply NoDup_cardinal_incl; auto. Qed. Lemma Permutation_NoDup l l' : Permutation l l' -> NoDup l -> NoDup l'. Proof. induction 1; auto. * inversion_clear 1; constructor; eauto using Permutation_in. * inversion_clear 1 as [|? ? H1 H2]. inversion_clear H2; simpl in *. constructor. simpl; intuition. constructor; intuition. Qed. Global Instance Permutation_NoDup' : Proper (@Permutation A ==> iff) (@NoDup A) | 10. Proof. repeat red; eauto using Permutation_NoDup. Qed. End Permutation_properties. Section Permutation_map. Variable A B : Type. Variable f : A -> B. Lemma Permutation_map l l' : Permutation l l' -> Permutation (map f l) (map f l'). Proof. induction 1; simpl; eauto. Qed. Global Instance Permutation_map' : Proper (@Permutation A ==> @Permutation B) (map f) | 10. Proof. exact Permutation_map. Qed. End Permutation_map. Section Injection. Definition injective {A B} (f : A->B) := forall x y, f x = f y -> x = y. Lemma injective_map_NoDup {A B} (f:A->B) (l:list A) : injective f -> NoDup l -> NoDup (map f l). Proof. intros Hf. induction 1 as [|x l Hx Hl IH]; simpl; constructor; trivial. rewrite in_map_iff. intros (y & Hy & Hy'). apply Hf in Hy. now subst. Qed. Lemma injective_bounded_surjective n f : injective f -> (forall x, x < n -> f x < n) -> (forall y, y < n -> exists x, x < n /\ f x = y). Proof. intros Hf H. set (l := seq 0 n). assert (P : incl (map f l) l). { intros x. rewrite in_map_iff. intros (y & <- & Hy'). unfold l in *. rewrite in_seq in *. simpl in *. destruct Hy' as (_,Hy'). auto with arith. } assert (P' : incl l (map f l)). { unfold l. apply NoDup_cardinal_incl; auto using injective_map_NoDup, seq_NoDup. now rewrite map_length. } intros x Hx. assert (Hx' : In x l) by (unfold l; rewrite in_seq; auto with arith). apply P' in Hx'. rewrite in_map_iff in Hx'. destruct Hx' as (y & Hy & Hy'). exists y; split; auto. unfold l in *; rewrite in_seq in Hy'. destruct Hy'; auto with arith. Qed. Lemma nat_bijection_Permutation n f : injective f -> (forall x, x < n -> f x < n) -> let l := seq 0 n in Permutation (map f l) l. Proof. intros Hf BD. apply NoDup_Permutation_bis; auto using injective_map_NoDup, seq_NoDup. * now rewrite map_length. * intros x. rewrite in_map_iff. intros (y & <- & Hy'). rewrite in_seq in *. simpl in *. destruct Hy' as (_,Hy'). auto with arith. Qed. End Injection. Section Permutation_alt. Variable A:Type. Implicit Type a : A. Implicit Type l : list A. (** Alternative characterization of permutation via [nth_error] and [nth] *) Let adapt f n := let m := f (S n) in if le_lt_dec m (f 0) then m else pred m. Let adapt_injective f : injective f -> injective (adapt f). Proof. unfold adapt. intros Hf x y EQ. destruct le_lt_dec as [LE|LT]; destruct le_lt_dec as [LE'|LT']. - now apply eq_add_S, Hf. - apply Lt.le_lt_or_eq in LE. destruct LE as [LT|EQ']; [|now apply Hf in EQ']. unfold lt in LT. rewrite EQ in LT. rewrite <- (Lt.S_pred _ _ LT') in LT. elim (Lt.lt_not_le _ _ LT' LT). - apply Lt.le_lt_or_eq in LE'. destruct LE' as [LT'|EQ']; [|now apply Hf in EQ']. unfold lt in LT'. rewrite <- EQ in LT'. rewrite <- (Lt.S_pred _ _ LT) in LT'. elim (Lt.lt_not_le _ _ LT LT'). - apply eq_add_S, Hf. now rewrite (Lt.S_pred _ _ LT), (Lt.S_pred _ _ LT'), EQ. Qed. Let adapt_ok a l1 l2 f : injective f -> length l1 = f 0 -> forall n, nth_error (l1++a::l2) (f (S n)) = nth_error (l1++l2) (adapt f n). Proof. unfold adapt. intros Hf E n. destruct le_lt_dec as [LE|LT]. - apply Lt.le_lt_or_eq in LE. destruct LE as [LT|EQ]; [|now apply Hf in EQ]. rewrite <- E in LT. rewrite 2 nth_error_app1; auto. - rewrite (Lt.S_pred _ _ LT) at 1. rewrite <- E, (Lt.S_pred _ _ LT) in LT. rewrite 2 nth_error_app2; auto with arith. rewrite <- Minus.minus_Sn_m; auto with arith. Qed. Lemma Permutation_nth_error l l' : Permutation l l' <-> (length l = length l' /\ exists f:nat->nat, injective f /\ forall n, nth_error l' n = nth_error l (f n)). Proof. split. { intros P. split; [now apply Permutation_length|]. induction P. - exists (fun n => n). split; try red; auto. - destruct IHP as (f & Hf & Hf'). exists (fun n => match n with O => O | S n => S (f n) end). split; try red. * intros [|y] [|z]; simpl; now auto. * intros [|n]; simpl; auto. - exists (fun n => match n with 0 => 1 | 1 => 0 | n => n end). split; try red. * intros [|[|z]] [|[|t]]; simpl; now auto. * intros [|[|n]]; simpl; auto. - destruct IHP1 as (f & Hf & Hf'). destruct IHP2 as (g & Hg & Hg'). exists (fun n => f (g n)). split; try red. * auto. * intros n. rewrite <- Hf'; auto. } { revert l. induction l'. - intros [|l] (E & _); now auto. - intros l (E & f & Hf & Hf'). simpl in E. assert (Ha : nth_error l (f 0) = Some a) by (symmetry; apply (Hf' 0)). destruct (nth_error_split l (f 0) Ha) as (l1 & l2 & L12 & L1). rewrite L12. rewrite <- Permutation_middle. constructor. apply IHl'; split; [|exists (adapt f); split]. * revert E. rewrite L12, !app_length. simpl. rewrite <- plus_n_Sm. now injection 1. * now apply adapt_injective. * intro n. rewrite <- (adapt_ok a), <- L12; auto. apply (Hf' (S n)). } Qed. Lemma Permutation_nth_error_bis l l' : Permutation l l' <-> exists f:nat->nat, injective f /\ (forall n, n < length l -> f n < length l) /\ (forall n, nth_error l' n = nth_error l (f n)). Proof. rewrite Permutation_nth_error; split. - intros (E & f & Hf & Hf'). exists f. do 2 (split; trivial). intros n Hn. destruct (Lt.le_or_lt (length l) (f n)) as [LE|LT]; trivial. rewrite <- nth_error_None, <- Hf', nth_error_None, <- E in LE. elim (Lt.lt_not_le _ _ Hn LE). - intros (f & Hf & Hf2 & Hf3); split; [|exists f; auto]. assert (H : length l' <= length l') by auto with arith. rewrite <- nth_error_None, Hf3, nth_error_None in H. destruct (Lt.le_or_lt (length l) (length l')) as [LE|LT]; [|apply Hf2 in LT; elim (Lt.lt_not_le _ _ LT H)]. apply Lt.le_lt_or_eq in LE. destruct LE as [LT|EQ]; trivial. rewrite <- nth_error_Some, Hf3, nth_error_Some in LT. destruct (injective_bounded_surjective Hf Hf2 LT) as (y & Hy & Hy'). apply Hf in Hy'. subst y. elim (Lt.lt_irrefl _ Hy). Qed. Lemma Permutation_nth l l' d : Permutation l l' <-> (let n := length l in length l' = n /\ exists f:nat->nat, (forall x, x < n -> f x < n) /\ (forall x y, x < n -> y < n -> f x = f y -> x = y) /\ (forall x, x < n -> nth x l' d = nth (f x) l d)). Proof. split. - intros H. assert (E := Permutation_length H). split; auto. apply Permutation_nth_error_bis in H. destruct H as (f & Hf & Hf2 & Hf3). exists f. split; [|split]; auto. intros n Hn. rewrite <- 2 nth_default_eq. unfold nth_default. now rewrite Hf3. - intros (E & f & Hf1 & Hf2 & Hf3). rewrite Permutation_nth_error. split; auto. exists (fun n => if le_lt_dec (length l) n then n else f n). split. * intros x y. destruct le_lt_dec as [LE|LT]; destruct le_lt_dec as [LE'|LT']; auto. + apply Hf1 in LT'. intros ->. elim (Lt.lt_irrefl (f y)). eapply Lt.lt_le_trans; eauto. + apply Hf1 in LT. intros <-. elim (Lt.lt_irrefl (f x)). eapply Lt.lt_le_trans; eauto. * intros n. destruct le_lt_dec as [LE|LT]. + assert (LE' : length l' <= n) by (now rewrite E). rewrite <- nth_error_None in LE, LE'. congruence. + assert (LT' : n < length l') by (now rewrite E). specialize (Hf3 n LT). rewrite <- 2 nth_default_eq in Hf3. unfold nth_default in Hf3. apply Hf1 in LT. rewrite <- nth_error_Some in LT, LT'. do 2 destruct nth_error; congruence. Qed. End Permutation_alt. (* begin hide *) Notation Permutation_app_swap := Permutation_app_comm (only parsing). (* end hide *)