(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* coherent U R x y. Proof. intros U R x y H'; red. exists y; auto with sets. Qed. Hint Resolve Rstar_imp_coherent. Theorem coherent_symmetric : forall (U:Type) (R:Relation U), Symmetric U (coherent U R). Proof. unfold coherent at 1. intros U R; red. intros x y H'; elim H'. intros z H'0; exists z; tauto. Qed. Theorem Strong_confluence : forall (U:Type) (R:Relation U), Strongly_confluent U R -> Confluent U R. Proof. intros U R H'; red. intro x; red; intros a b H'0. unfold coherent at 1. generalize b; clear b. elim H'0; clear H'0. intros x0 b H'1; exists b; auto with sets. intros x0 y z H'1 H'2 H'3 b H'4. generalize (Lemma1 U R); intro h; lapply h; [ intro H'0; generalize (H'0 x0 b); intro h0; lapply h0; [ intro H'5; generalize (H'5 y); intro h1; lapply h1; [ intro h2; elim h2; intros z0 h3; elim h3; intros H'6 H'7; clear h h0 h1 h2 h3 | clear h h0 h1 ] | clear h h0 ] | clear h ]; auto with sets. generalize (H'3 z0); intro h; lapply h; [ intro h0; elim h0; intros z1 h1; elim h1; intros H'8 H'9; clear h h0 h1 | clear h ]; auto with sets. exists z1; split; auto with sets. apply Rstar_n with z0; auto with sets. Qed. Theorem Strong_confluence_direct : forall (U:Type) (R:Relation U), Strongly_confluent U R -> Confluent U R. Proof. intros U R H'; red. intro x; red; intros a b H'0. unfold coherent at 1. generalize b; clear b. elim H'0; clear H'0. intros x0 b H'1; exists b; auto with sets. intros x0 y z H'1 H'2 H'3 b H'4. cut (ex (fun t:U => Rstar U R y t /\ R b t)). intro h; elim h; intros t h0; elim h0; intros H'0 H'5; clear h h0. generalize (H'3 t); intro h; lapply h; [ intro h0; elim h0; intros z0 h1; elim h1; intros H'6 H'7; clear h h0 h1 | clear h ]; auto with sets. exists z0; split; [ assumption | idtac ]. apply Rstar_n with t; auto with sets. generalize H'1; generalize y; clear H'1. elim H'4. intros x1 y0 H'0; exists y0; auto with sets. intros x1 y0 z0 H'0 H'1 H'5 y1 H'6. red in H'. generalize (H' x1 y0 y1); intro h; lapply h; [ intro H'7; lapply H'7; [ intro h0; elim h0; intros z1 h1; elim h1; intros H'8 H'9; clear h H'7 h0 h1 | clear h ] | clear h ]; auto with sets. generalize (H'5 z1); intro h; lapply h; [ intro h0; elim h0; intros t h1; elim h1; intros H'7 H'10; clear h h0 h1 | clear h ]; auto with sets. exists t; split; auto with sets. apply Rstar_n with z1; auto with sets. Qed. Theorem Noetherian_contains_Noetherian : forall (U:Type) (R R':Relation U), Noetherian U R -> contains U R R' -> Noetherian U R'. Proof. unfold Noetherian at 2. intros U R R' H' H'0 x. elim (H' x); auto with sets. Qed. Theorem Newman : forall (U:Type) (R:Relation U), Noetherian U R -> Locally_confluent U R -> Confluent U R. Proof. intros U R H' H'0; red; intro x. elim (H' x); unfold confluent. intros x0 H'1 H'2 y z H'3 H'4. generalize (Rstar_cases U R x0 y); intro h; lapply h; [ intro h0; elim h0; [ clear h h0; intro h1 | intro h1; elim h1; intros u h2; elim h2; intros H'5 H'6; clear h h0 h1 h2 ] | clear h ]; auto with sets. elim h1; auto with sets. generalize (Rstar_cases U R x0 z); intro h; lapply h; [ intro h0; elim h0; [ clear h h0; intro h1 | intro h1; elim h1; intros v h2; elim h2; intros H'7 H'8; clear h h0 h1 h2 ] | clear h ]; auto with sets. elim h1; generalize coherent_symmetric; intro t; red in t; auto with sets. unfold Locally_confluent, locally_confluent, coherent in H'0. generalize (H'0 x0 u v); intro h; lapply h; [ intro H'9; lapply H'9; [ intro h0; elim h0; intros t h1; elim h1; intros H'10 H'11; clear h H'9 h0 h1 | clear h ] | clear h ]; auto with sets. clear H'0. unfold coherent at 1 in H'2. generalize (H'2 u); intro h; lapply h; [ intro H'0; generalize (H'0 y t); intro h0; lapply h0; [ intro H'9; lapply H'9; [ intro h1; elim h1; intros y1 h2; elim h2; intros H'12 H'13; clear h h0 H'9 h1 h2 | clear h h0 ] | clear h h0 ] | clear h ]; auto with sets. generalize Rstar_transitive; intro T; red in T. generalize (H'2 v); intro h; lapply h; [ intro H'9; generalize (H'9 y1 z); intro h0; lapply h0; [ intro H'14; lapply H'14; [ intro h1; elim h1; intros z1 h2; elim h2; intros H'15 H'16; clear h h0 H'14 h1 h2 | clear h h0 ] | clear h h0 ] | clear h ]; auto with sets. red; (exists z1; split); auto with sets. apply T with y1; auto with sets. apply T with t; auto with sets. Qed.