(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Rstar y z -> Rstar x z. Inductive Rstar1 : Relation U := | Rstar1_0 : forall x:U, Rstar1 x x | Rstar1_1 : forall x y:U, R x y -> Rstar1 x y | Rstar1_n : forall x y z:U, Rstar1 x y -> Rstar1 y z -> Rstar1 x z. Inductive Rplus : Relation U := | Rplus_0 : forall x y:U, R x y -> Rplus x y | Rplus_n : forall x y z:U, R x y -> Rplus y z -> Rplus x z. Definition Strongly_confluent : Prop := forall x a b:U, R x a -> R x b -> ex (fun z:U => R a z /\ R b z). End Relations_2. Hint Resolve Rstar_0: sets v62. Hint Resolve Rstar1_0: sets v62. Hint Resolve Rstar1_1: sets v62. Hint Resolve Rplus_0: sets v62.