(****************************************************************************) (* *) (* Naive Set Theory in Coq *) (* *) (* INRIA INRIA *) (* Rocquencourt Sophia-Antipolis *) (* *) (* Coq V6.1 *) (* *) (* Gilles Kahn *) (* Gerard Huet *) (* *) (* *) (* *) (* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *) (* to the Newton Institute for providing an exceptional work environment *) (* in Summer 1995. Several developments by E. Ledinot were an inspiration. *) (****************************************************************************) (* $Id$ *) Require Export Finite_sets. Require Export Constructive_sets. Require Export Classical_Type. Require Export Classical_sets. Require Export Powerset. Require Export Powerset_facts. Require Export Powerset_Classical_facts. Require Export Gt. Require Export Lt. Require Export Le. Require Export Finite_sets_facts. Require Export Image. Require Export Infinite_sets. Require Export Compare_dec. Require Export Relations_1. Require Export Partial_Order. Require Export Cpo. Section Integers_sect. Inductive Nat : Type := mkNat: nat -> Nat. Parameter nat_of_Nat: Nat -> nat. Axiom nat_of_nat_returns: (n: nat) (nat_of_Nat (mkNat n)) = n. Lemma mkNat_injective: (n1, n2: nat) (mkNat n1) == (mkNat n2) -> n1 = n2. Proof. Intros n1 n2 H'; Try Assumption. Rewrite <- (nat_of_nat_returns n1). Rewrite <- (nat_of_nat_returns n2). Rewrite H'; Auto with sets arith. Qed. Inductive Integers : (Ensemble Nat) := Integers_defn: (x: Nat) (In Nat Integers x). Hints Resolve Integers_defn. Inductive Le_Nat [x, y:Nat]: Prop := Definition_of_Le_nat: (n1, n2: nat) x == (mkNat n1) -> y == (mkNat n2) -> (le n1 n2) -> (Le_Nat x y). Lemma Le_Nat_direct: (n1, n2: nat) (le n1 n2) -> (Le_Nat (mkNat n1) (mkNat n2)). Proof. Intros n1 n2 H'. Apply Definition_of_Le_nat with n1 := n1 n2 := n2; Auto with sets arith. Qed. Hints Resolve Le_Nat_direct. Lemma Le_Nat_Reflexive: (Reflexive Nat Le_Nat). Proof. Red. Intro x; Elim x; Auto with sets arith. Qed. Hints Resolve Le_Nat_Reflexive. Lemma Le_Nat_antisym: (Antisymmetric Nat Le_Nat). Proof. Red. Intros x y H'; Elim H'. Intros n1 n2 H'0 H'1 H'2 H'3; Elim H'3. Intros n3 n4 H'4 H'5 H'6. Cut n1 = n4 /\ n2 = n3. Intro H'7. Generalize H'6. Elim H'7; Intros H'8 H'9; Rewrite <- H'8; Clear H'7. Rewrite <- H'9. Intro H'7. Cut n1 = n2. Rewrite H'0; Rewrite H'1. Intro H'10; Rewrite <- H'10; Auto with sets arith. Apply le_antisym; Auto with sets arith. Split; Apply mkNat_injective. Rewrite <- H'5; Rewrite H'0; Auto with sets arith. Rewrite <- H'4; Rewrite H'1; Auto with sets arith. Qed. Hints Resolve Le_Nat_antisym. Lemma Le_Nat_trans: (Transitive Nat Le_Nat). Proof. Red. Intros x y z H'; Elim H'. Intros n1 n2 H'0 H'1 H'2 H'3; Elim H'3. Intros n3 n4 H'4 H'5 H'6. Rewrite H'0; Rewrite H'5. Apply Le_Nat_direct. Apply le_trans with m := n3; Auto with sets arith. Cut n2 = n3. Intro H'7; Rewrite <- H'7; Auto with sets arith. Apply mkNat_injective. Rewrite <- H'4; Rewrite <- H'1; Auto with sets arith. Qed. Hints Resolve Le_Nat_trans. Lemma Le_Nat_Order: (Order Nat Le_Nat). Proof. Auto with sets arith. Qed. Hints Resolve Le_Nat_Order. Definition Nat_O := (mkNat O). Lemma triv_Nat: (n: nat) (In Nat Integers (mkNat n)). Proof. Auto with sets arith. Qed. Hints Resolve triv_Nat. Definition Nat_po: (PO Nat). Apply Definition_of_PO with Carrier_of := Integers Rel_of := Le_Nat; Auto with sets arith. Apply Inhabited_intro with x := Nat_O; Auto with sets arith. Defined. Hints Unfold Nat_po. Lemma Le_Nat_total_order: (Totally_ordered Nat Nat_po Integers). Proof. Apply Totally_ordered_definition. Simpl. Intros H' x; Elim x. Intros n y; Elim y. Intros n0 H'0. Specialize 2 le_or_lt with n := n m := n0; Intro H'2; Elim H'2. Intro H'1; Left; Auto with sets arith. Intro H'1; Right. Cut (le n0 n); Auto with sets arith. Qed. Hints Resolve Le_Nat_total_order. Lemma Finite_subset_has_lub: (X: (Ensemble Nat)) (Finite Nat X) -> (EXT m: Nat | (Upper_Bound Nat Nat_po X m)). Proof. Intros X H'; Elim H'. Exists Nat_O. Apply Upper_Bound_definition; Auto with sets arith. Intros y H'0; Elim H'0; Auto with sets arith. Intros A H'0 H'1 x H'2; Try Assumption. Elim H'1; Intros x0 H'3; Clear H'1. Elim Le_Nat_total_order. Simpl. Intro H'1; Try Assumption. LApply H'1; [Intro H'4; Idtac | Try Assumption]; Auto with sets arith. Generalize (H'4 x0 x). Clear H'4. Clear H'1. Intro H'1; LApply H'1; [Intro H'4; Elim H'4; [Intro H'5; Try Exact H'5; Clear H'4 H'1 | Intro H'5; Clear H'4 H'1] | Clear H'1]. Exists x. Apply Upper_Bound_definition; Auto with sets arith; Simpl. Intros y H'1; Elim H'1. Generalize Le_Nat_trans. Intro H'4; Red in H'4. Intros x1 H'6; Try Assumption. Apply H'4 with y := x0; Auto with sets arith. Elim H'3; Simpl; Auto with sets arith. Intros x1 H'4; Elim H'4; Auto with sets arith. Exists x0. Apply Upper_Bound_definition; Auto with sets arith; Simpl. Intros y H'1; Elim H'1. Intros x1 H'4; Try Assumption. Elim H'3; Simpl; Auto with sets arith. Intros x1 H'4; Elim H'4; Auto with sets arith. Red. Intros x1 H'1; Elim H'1; Auto with sets arith. Qed. Lemma Integers_has_no_ub: ~ (EXT m:Nat | (Upper_Bound Nat Nat_po Integers m)). Proof. Red; Intro H'; Elim H'. Intro x; Elim x. Intros n H'0; Elim H'0. Intros H'1 H'2; Try Assumption. Cut (In Nat Integers (mkNat (S n))). Intro H'3; Try Assumption. Specialize 1 H'2 with y := (mkNat (S n)); Intro H'4; LApply H'4; [Intro H'5; Clear H'4 | Try Assumption; Clear H'4]. Simpl in H'5. Elim H'5. Intros n1 n2 H'4 H'6; Try Assumption. Specialize 2 mkNat_injective with n1 := (S n) n2 := n1; Intro H'8; LApply H'8; [Intro H'9; Rewrite <- H'9; Clear H'8 | Clear H'8]; Auto with sets arith. Specialize 2 mkNat_injective with n1 := n n2 := n2; Intro H'8; LApply H'8; [Intro H'10; Rewrite <- H'10; Clear H'8 | Clear H'8]; Auto with sets arith. Intro H'7; Try Assumption. Specialize 1 le_Sn_n with n := n; Intro H'8; Elim H'8. Auto with sets arith. Auto with sets arith. Qed. Lemma Integers_infinite: ~ (Finite Nat Integers). Proof. Generalize Integers_has_no_ub. Intro H'; Red; Intro H'0; Try Exact H'0. Apply H'. Apply Finite_subset_has_lub; Auto with sets arith. Qed. End Integers_sect.