(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* A->Prop := t_step: (x,y:A)(R x y)->(clos_trans x y) | t_trans: (x,y,z:A)(clos_trans x y)->(clos_trans y z)->(clos_trans x z). End Transitive_Closure. Section Reflexive_Transitive_Closure. Variable A: Set. Variable R: (relation A). Inductive clos_refl_trans: (relation A) := rt_step: (x,y:A)(R x y)->(clos_refl_trans x y) | rt_refl: (x:A)(clos_refl_trans x x) | rt_trans: (x,y,z: A)(clos_refl_trans x y)->(clos_refl_trans y z) ->(clos_refl_trans x z). End Reflexive_Transitive_Closure. Section Reflexive_Symetric_Transitive_Closure. Variable A: Set. Variable R: (relation A). Inductive clos_refl_sym_trans: (relation A) := rst_step: (x,y:A)(R x y)->(clos_refl_sym_trans x y) | rst_refl: (x:A)(clos_refl_sym_trans x x) | rst_sym: (x,y:A)(clos_refl_sym_trans x y)->(clos_refl_sym_trans y x) | rst_trans: (x,y,z:A)(clos_refl_sym_trans x y)->(clos_refl_sym_trans y z) ->(clos_refl_sym_trans x z). End Reflexive_Symetric_Transitive_Closure. Section Transposee. Variable A: Set. Variable R: (relation A). Definition transp := [x,y:A](R y x). End Transposee. Section Union. Variable A: Set. Variable R1,R2: (relation A). Definition union := [x,y:A](R1 x y)\/(R2 x y). End Union. Section Disjoint_Union. Variable A,B:Set. Variable leA: A->A->Prop. Variable leB: B->B->Prop. Inductive le_AsB : A+B->A+B->Prop := le_aa: (x,y:A) (leA x y) -> (le_AsB (inl A B x) (inl A B y)) | le_ab: (x:A)(y:B) (le_AsB (inl A B x) (inr A B y)) | le_bb: (x,y:B) (leB x y) -> (le_AsB (inr A B x) (inr A B y)). End Disjoint_Union. Section Lexicographic_Product. (* Lexicographic order on dependent pairs *) Variable A:Set. Variable B:A->Set. Variable leA: A->A->Prop. Variable leB: (x:A)(B x)->(B x)->Prop. Inductive lexprod : (sigS A B) -> (sigS A B) ->Prop := left_lex : (x,x':A)(y:(B x)) (y':(B x')) (leA x x') ->(lexprod (existS A B x y) (existS A B x' y')) | right_lex : (x:A) (y,y':(B x)) (leB x y y') -> (lexprod (existS A B x y) (existS A B x y')). End Lexicographic_Product. Section Symmetric_Product. Variable A:Set. Variable B:Set. Variable leA: A->A->Prop. Variable leB: B->B->Prop. Inductive symprod : (A*B) -> (A*B) ->Prop := left_sym : (x,x':A)(leA x x')->(y:B)(symprod (x,y) (x',y)) | right_sym : (y,y':B)(leB y y')->(x:A)(symprod (x,y) (x,y')). End Symmetric_Product. Section Swap. Variable A:Set. Variable R:A->A->Prop. Inductive swapprod: (A*A)->(A*A)->Prop := sp_noswap: (x,x':A*A)(symprod A A R R x x')->(swapprod x x') | sp_swap: (x,y:A)(p:A*A)(symprod A A R R (x,y) p)->(swapprod (y,x) p). End Swap. Section Lexicographic_Exponentiation. Variable A : Set. Variable leA : A->A->Prop. Local Nil := (nil A). Local List := (list A). Inductive Ltl : List->List->Prop := Lt_nil: (a:A)(x:List)(Ltl Nil (cons a x)) | Lt_hd : (a,b:A) (leA a b)-> (x,y:(list A))(Ltl (cons a x) (cons b y)) | Lt_tl : (a:A)(x,y:List)(Ltl x y) -> (Ltl (cons a x) (cons a y)). Inductive Desc : List->Prop := d_nil : (Desc Nil) | d_one : (x:A)(Desc (cons x Nil)) | d_conc : (x,y:A)(l:List)(leA x y) -> (Desc l^(cons y Nil))->(Desc (l^(cons y Nil))^(cons x Nil)). Definition Pow :Set := (sig List Desc). Definition lex_exp : Pow -> Pow ->Prop := [a,b:Pow](Ltl (proj1_sig List Desc a) (proj1_sig List Desc b)). End Lexicographic_Exponentiation. Hints Unfold transp union : sets v62. Hints Resolve t_step rt_step rt_refl rst_step rst_refl : sets v62. Hints Immediate rst_sym : sets v62.