(* $Id$ *) (****************************************************************************) (* Bruno Barras *) (****************************************************************************) Require Relation_Definitions. Require Relation_Operators. Section Properties. Variable A: Set. Variable R: (relation A). Local incl : (relation A)->(relation A)->Prop := [R1,R2: (relation A)] (x,y:A) (R1 x y) -> (R2 x y). Section Clos_Refl_Trans. Lemma clos_rt_is_preorder: (preorder A (clos_refl_trans A R)). Apply Build_preorder. Exact (rt_refl A R). Exact (rt_trans A R). Save. Lemma clos_rt_idempotent: (incl (clos_refl_trans A (clos_refl_trans A R)) (clos_refl_trans A R)). Red. Induction 1; Auto with sets. Intros. Apply rt_trans with y0; Auto with sets. Save. Lemma clos_refl_trans_ind_left: (A:Set)(R:A->A->Prop)(M:A)(P:A->Prop) (P M) ->((P0,N:A) (clos_refl_trans A R M P0)->(P P0)->(R P0 N)->(P N)) ->(a:A)(clos_refl_trans A R M a)->(P a). Intros. Generalize H H0 . Clear H H0. (Elim H1; Intros; Auto with sets). (Apply H2 with x; Auto with sets). Apply H3. (Apply H0; Auto with sets). Intros. (Apply H5 with P0; Auto with sets). (Apply rt_trans with y; Auto with sets). Save. End Clos_Refl_Trans. Section Clos_Refl_Sym_Trans. Lemma clos_rt_clos_rst: (inclusion A (clos_refl_trans A R) (clos_refl_sym_trans A R)). Red. (Induction 1; Auto with sets). Intros. (Apply rst_trans with y0; Auto with sets). Save. Lemma clos_rst_is_equiv: (equivalence A (clos_refl_sym_trans A R)). Apply Build_equivalence. Exact (rst_refl A R). Exact (rst_trans A R). Exact (rst_sym A R). Save. Lemma clos_rst_idempotent: (incl (clos_refl_sym_trans A (clos_refl_sym_trans A R)) (clos_refl_sym_trans A R)). Red. (Induction 1; Auto with sets). Intros. (Apply rst_trans with y0; Auto with sets). Save. End Clos_Refl_Sym_Trans. End Properties.