(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* / INR (fact i) * x ^ i) l. Lemma exp_cof_no_R0 : forall n:nat, / INR (fact n) <> 0. Proof. intro. apply Rinv_neq_0_compat. apply INR_fact_neq_0. Qed. Lemma exist_exp : forall x:R, { l:R | exp_in x l }. Proof. intro; generalize (Alembert_C3 (fun n:nat => / INR (fact n)) x exp_cof_no_R0 Alembert_exp). unfold Pser, exp_in. trivial. Defined. Definition exp (x:R) : R := proj1_sig (exist_exp x). Lemma pow_i : forall i:nat, (0 < i)%nat -> 0 ^ i = 0. Proof. intros; apply pow_ne_zero. red; intro; rewrite H0 in H; elim (lt_irrefl _ H). Qed. Lemma exist_exp0 : { l:R | exp_in 0 l }. Proof. exists 1. unfold exp_in; unfold infinite_sum; intros. exists 0%nat. intros; replace (sum_f_R0 (fun i:nat => / INR (fact i) * 0 ^ i) n) with 1. unfold R_dist; replace (1 - 1) with 0; [ rewrite Rabs_R0; assumption | ring ]. induction n as [| n Hrecn]. simpl; rewrite Rinv_1; ring. rewrite tech5. rewrite <- Hrecn. simpl. ring. unfold ge; apply le_O_n. Defined. (* Value of [exp 0] *) Lemma exp_0 : exp 0 = 1. Proof. cut (exp_in 0 (exp 0)). cut (exp_in 0 1). unfold exp_in; intros; eapply uniqueness_sum. apply H0. apply H. exact (proj2_sig exist_exp0). exact (proj2_sig (exist_exp 0)). Qed. (*****************************************) (** * Definition of hyperbolic functions *) (*****************************************) Definition cosh (x:R) : R := (exp x + exp (- x)) / 2. Definition sinh (x:R) : R := (exp x - exp (- x)) / 2. Definition tanh (x:R) : R := sinh x / cosh x. Lemma cosh_0 : cosh 0 = 1. Proof. unfold cosh; rewrite Ropp_0; rewrite exp_0. unfold Rdiv; rewrite <- Rinv_r_sym; [ reflexivity | discrR ]. Qed. Lemma sinh_0 : sinh 0 = 0. Proof. unfold sinh; rewrite Ropp_0; rewrite exp_0. unfold Rminus, Rdiv; rewrite Rplus_opp_r; apply Rmult_0_l. Qed. Definition cos_n (n:nat) : R := (-1) ^ n / INR (fact (2 * n)). Lemma simpl_cos_n : forall n:nat, cos_n (S n) / cos_n n = - / INR (2 * S n * (2 * n + 1)). Proof. intro; unfold cos_n; replace (S n) with (n + 1)%nat; [ idtac | ring ]. rewrite pow_add; unfold Rdiv; rewrite Rinv_mult_distr. rewrite Rinv_involutive. replace ((-1) ^ n * (-1) ^ 1 * / INR (fact (2 * (n + 1))) * (/ (-1) ^ n * INR (fact (2 * n)))) with ((-1) ^ n * / (-1) ^ n * / INR (fact (2 * (n + 1))) * INR (fact (2 * n)) * (-1) ^ 1); [ idtac | ring ]. rewrite <- Rinv_r_sym. rewrite Rmult_1_l; unfold pow; rewrite Rmult_1_r. replace (2 * (n + 1))%nat with (S (S (2 * n))); [ idtac | ring ]. do 2 rewrite fact_simpl; do 2 rewrite mult_INR; repeat rewrite Rinv_mult_distr; try (apply not_O_INR; discriminate). rewrite <- (Rmult_comm (-1)). repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_r. replace (S (2 * n)) with (2 * n + 1)%nat; [ idtac | ring ]. rewrite mult_INR; rewrite Rinv_mult_distr. ring. apply not_O_INR; discriminate. replace (2 * n + 1)%nat with (S (2 * n)); [ apply not_O_INR; discriminate | ring ]. apply INR_fact_neq_0. apply INR_fact_neq_0. apply prod_neq_R0; [ apply not_O_INR; discriminate | apply INR_fact_neq_0 ]. apply pow_nonzero; discrR. apply INR_fact_neq_0. apply pow_nonzero; discrR. apply Rinv_neq_0_compat; apply INR_fact_neq_0. Qed. Lemma archimed_cor1 : forall eps:R, 0 < eps -> exists N : nat, / INR N < eps /\ (0 < N)%nat. Proof. intros; cut (/ eps < IZR (up (/ eps))). intro; cut (0 <= up (/ eps))%Z. intro; assert (H2 := IZN _ H1); elim H2; intros; exists (max x 1). split. cut (0 < IZR (Z.of_nat x)). intro; rewrite INR_IZR_INZ; apply Rle_lt_trans with (/ IZR (Z.of_nat x)). apply Rmult_le_reg_l with (IZR (Z.of_nat x)). assumption. rewrite <- Rinv_r_sym; [ idtac | red; intro; rewrite H5 in H4; elim (Rlt_irrefl _ H4) ]. apply Rmult_le_reg_l with (IZR (Z.of_nat (max x 1))). apply Rlt_le_trans with (IZR (Z.of_nat x)). assumption. repeat rewrite <- INR_IZR_INZ; apply le_INR; apply le_max_l. rewrite Rmult_1_r; rewrite (Rmult_comm (IZR (Z.of_nat (max x 1)))); rewrite Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_r; repeat rewrite <- INR_IZR_INZ; apply le_INR; apply le_max_l. rewrite <- INR_IZR_INZ; apply not_O_INR. red; intro; assert (H6 := le_max_r x 1); cut (0 < 1)%nat; [ intro | apply lt_O_Sn ]; assert (H8 := lt_le_trans _ _ _ H7 H6); rewrite H5 in H8; elim (lt_irrefl _ H8). pattern eps at 1; rewrite <- Rinv_involutive. apply Rinv_lt_contravar. apply Rmult_lt_0_compat; [ apply Rinv_0_lt_compat; assumption | assumption ]. rewrite H3 in H0; assumption. red; intro; rewrite H5 in H; elim (Rlt_irrefl _ H). apply Rlt_trans with (/ eps). apply Rinv_0_lt_compat; assumption. rewrite H3 in H0; assumption. apply lt_le_trans with 1%nat; [ apply lt_O_Sn | apply le_max_r ]. apply le_IZR; left; apply Rlt_trans with (/ eps); [ apply Rinv_0_lt_compat; assumption | assumption ]. assert (H0 := archimed (/ eps)). elim H0; intros; assumption. Qed. Lemma Alembert_cos : Un_cv (fun n:nat => Rabs (cos_n (S n) / cos_n n)) 0. Proof. unfold Un_cv; intros. assert (H0 := archimed_cor1 eps H). elim H0; intros; exists x. intros; rewrite simpl_cos_n; unfold R_dist; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; rewrite Rabs_Rabsolu; rewrite Rabs_Ropp; rewrite Rabs_right. rewrite mult_INR; rewrite Rinv_mult_distr. cut (/ INR (2 * S n) < 1). intro; cut (/ INR (2 * n + 1) < eps). intro; rewrite <- (Rmult_1_l eps). apply Rmult_gt_0_lt_compat; try assumption. change (0 < / INR (2 * n + 1)); apply Rinv_0_lt_compat; apply lt_INR_0. replace (2 * n + 1)%nat with (S (2 * n)); [ apply lt_O_Sn | ring ]. apply Rlt_0_1. cut (x < 2 * n + 1)%nat. intro; assert (H5 := lt_INR _ _ H4). apply Rlt_trans with (/ INR x). apply Rinv_lt_contravar. apply Rmult_lt_0_compat. apply lt_INR_0. elim H1; intros; assumption. apply lt_INR_0; replace (2 * n + 1)%nat with (S (2 * n)); [ apply lt_O_Sn | ring ]. assumption. elim H1; intros; assumption. apply lt_le_trans with (S n). unfold ge in H2; apply le_lt_n_Sm; assumption. replace (2 * n + 1)%nat with (S (2 * n)) by ring. apply le_n_S; apply le_n_2n. apply Rmult_lt_reg_l with (INR (2 * S n)). apply lt_INR_0; replace (2 * S n)%nat with (S (S (2 * n))). apply lt_O_Sn. replace (S n) with (n + 1)%nat by ring. ring. rewrite <- Rinv_r_sym. rewrite Rmult_1_r. apply (lt_INR 1). replace (2 * S n)%nat with (S (S (2 * n))). apply lt_n_S; apply lt_O_Sn. ring. apply not_O_INR; discriminate. apply not_O_INR; discriminate. replace (2 * n + 1)%nat with (S (2 * n)); [ apply not_O_INR; discriminate | ring ]. apply Rle_ge; left; apply Rinv_0_lt_compat. apply lt_INR_0. replace (2 * S n * (2 * n + 1))%nat with (2 + (4 * (n * n) + 6 * n))%nat by ring. apply lt_O_Sn. Qed. Lemma cosn_no_R0 : forall n:nat, cos_n n <> 0. Proof. intro; unfold cos_n; unfold Rdiv; apply prod_neq_R0. apply pow_nonzero; discrR. apply Rinv_neq_0_compat. apply INR_fact_neq_0. Qed. (**********) Definition cos_in (x l:R) : Prop := infinite_sum (fun i:nat => cos_n i * x ^ i) l. (**********) Lemma exist_cos : forall x:R, { l:R | cos_in x l }. Proof. intro; generalize (Alembert_C3 cos_n x cosn_no_R0 Alembert_cos). unfold Pser, cos_in; trivial. Qed. (** Definition of cosinus *) Definition cos (x:R) : R := let (a,_) := exist_cos (Rsqr x) in a. Definition sin_n (n:nat) : R := (-1) ^ n / INR (fact (2 * n + 1)). Lemma simpl_sin_n : forall n:nat, sin_n (S n) / sin_n n = - / INR ((2 * S n + 1) * (2 * S n)). Proof. intro; unfold sin_n; replace (S n) with (n + 1)%nat; [ idtac | ring ]. rewrite pow_add; unfold Rdiv; rewrite Rinv_mult_distr. rewrite Rinv_involutive. replace ((-1) ^ n * (-1) ^ 1 * / INR (fact (2 * (n + 1) + 1)) * (/ (-1) ^ n * INR (fact (2 * n + 1)))) with ((-1) ^ n * / (-1) ^ n * / INR (fact (2 * (n + 1) + 1)) * INR (fact (2 * n + 1)) * (-1) ^ 1); [ idtac | ring ]. rewrite <- Rinv_r_sym. rewrite Rmult_1_l; unfold pow; rewrite Rmult_1_r; replace (2 * (n + 1) + 1)%nat with (S (S (2 * n + 1))). do 2 rewrite fact_simpl; do 2 rewrite mult_INR; repeat rewrite Rinv_mult_distr. rewrite <- (Rmult_comm (-1)); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_r; replace (S (2 * n + 1)) with (2 * (n + 1))%nat. repeat rewrite mult_INR; repeat rewrite Rinv_mult_distr. ring. apply not_O_INR; discriminate. replace (n + 1)%nat with (S n); [ apply not_O_INR; discriminate | ring ]. apply not_O_INR; discriminate. apply prod_neq_R0. apply not_O_INR; discriminate. replace (n + 1)%nat with (S n); [ apply not_O_INR; discriminate | ring ]. apply not_O_INR; discriminate. replace (n + 1)%nat with (S n); [ apply not_O_INR; discriminate | ring ]. rewrite mult_plus_distr_l; cut (forall n:nat, S n = (n + 1)%nat). intros; rewrite (H (2 * n + 1)%nat). ring. intros; ring. apply INR_fact_neq_0. apply not_O_INR; discriminate. apply INR_fact_neq_0. apply not_O_INR; discriminate. apply prod_neq_R0; [ apply not_O_INR; discriminate | apply INR_fact_neq_0 ]. cut (forall n:nat, S (S n) = (n + 2)%nat); [ intros; rewrite (H (2 * n + 1)%nat); ring | intros; ring ]. apply pow_nonzero; discrR. apply INR_fact_neq_0. apply pow_nonzero; discrR. apply Rinv_neq_0_compat; apply INR_fact_neq_0. Qed. Lemma Alembert_sin : Un_cv (fun n:nat => Rabs (sin_n (S n) / sin_n n)) 0. Proof. unfold Un_cv; intros; assert (H0 := archimed_cor1 eps H). elim H0; intros; exists x. intros; rewrite simpl_sin_n; unfold R_dist; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; rewrite Rabs_Rabsolu; rewrite Rabs_Ropp; rewrite Rabs_right. rewrite mult_INR; rewrite Rinv_mult_distr. cut (/ INR (2 * S n) < 1). intro; cut (/ INR (2 * S n + 1) < eps). intro; rewrite <- (Rmult_1_l eps); rewrite (Rmult_comm (/ INR (2 * S n + 1))); apply Rmult_gt_0_lt_compat; try assumption. change (0 < / INR (2 * S n + 1)); apply Rinv_0_lt_compat; apply lt_INR_0; replace (2 * S n + 1)%nat with (S (2 * S n)); [ apply lt_O_Sn | ring ]. apply Rlt_0_1. cut (x < 2 * S n + 1)%nat. intro; assert (H5 := lt_INR _ _ H4); apply Rlt_trans with (/ INR x). apply Rinv_lt_contravar. apply Rmult_lt_0_compat. apply lt_INR_0; elim H1; intros; assumption. apply lt_INR_0; replace (2 * S n + 1)%nat with (S (2 * S n)); [ apply lt_O_Sn | ring ]. assumption. elim H1; intros; assumption. apply lt_le_trans with (S n). unfold ge in H2; apply le_lt_n_Sm; assumption. replace (2 * S n + 1)%nat with (S (2 * S n)) by ring. apply le_S; apply le_n_2n. apply Rmult_lt_reg_l with (INR (2 * S n)). apply lt_INR_0; replace (2 * S n)%nat with (S (S (2 * n))); [ apply lt_O_Sn | ring ]. rewrite <- Rinv_r_sym. rewrite Rmult_1_r. apply (lt_INR 1). replace (2 * S n)%nat with (S (S (2 * n))). apply lt_n_S; apply lt_O_Sn. ring. apply not_O_INR; discriminate. apply not_O_INR; discriminate. apply not_O_INR; discriminate. left; apply Rinv_0_lt_compat. apply lt_INR_0. replace ((2 * S n + 1) * (2 * S n))%nat with (6 + (4 * (n * n) + 10 * n))%nat by ring. apply lt_O_Sn. Qed. Lemma sin_no_R0 : forall n:nat, sin_n n <> 0. Proof. intro; unfold sin_n; unfold Rdiv; apply prod_neq_R0. apply pow_nonzero; discrR. apply Rinv_neq_0_compat; apply INR_fact_neq_0. Qed. (**********) Definition sin_in (x l:R) : Prop := infinite_sum (fun i:nat => sin_n i * x ^ i) l. (**********) Lemma exist_sin : forall x:R, { l:R | sin_in x l }. Proof. intro; generalize (Alembert_C3 sin_n x sin_no_R0 Alembert_sin). unfold Pser, sin_n; trivial. Defined. (***********************) (* Definition of sinus *) Definition sin (x:R) : R := let (a,_) := exist_sin (Rsqr x) in x * a. (*********************************************) (** * Properties *) (*********************************************) Lemma cos_sym : forall x:R, cos x = cos (- x). Proof. intros; unfold cos; replace (Rsqr (- x)) with (Rsqr x). reflexivity. apply Rsqr_neg. Qed. Lemma sin_antisym : forall x:R, sin (- x) = - sin x. Proof. intro; unfold sin; replace (Rsqr (- x)) with (Rsqr x); [ idtac | apply Rsqr_neg ]. case (exist_sin (Rsqr x)); intros; ring. Qed. Lemma sin_0 : sin 0 = 0. Proof. unfold sin; case (exist_sin (Rsqr 0)). intros; ring. Qed. Lemma exist_cos0 : { l:R | cos_in 0 l }. Proof. exists 1. unfold cos_in; unfold infinite_sum; intros; exists 0%nat. intros. unfold R_dist. induction n as [| n Hrecn]. unfold cos_n; simpl. unfold Rdiv; rewrite Rinv_1. do 2 rewrite Rmult_1_r. unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. rewrite tech5. replace (cos_n (S n) * 0 ^ S n) with 0. rewrite Rplus_0_r. apply Hrecn; unfold ge; apply le_O_n. simpl; ring. Defined. (* Value of [cos 0] *) Lemma cos_0 : cos 0 = 1. Proof. cut (cos_in 0 (cos 0)). cut (cos_in 0 1). unfold cos_in; intros; eapply uniqueness_sum. apply H0. apply H. exact (proj2_sig exist_cos0). assert (H := proj2_sig (exist_cos (Rsqr 0))); unfold cos; pattern 0 at 1; replace 0 with (Rsqr 0); [ exact H | apply Rsqr_0 ]. Qed.