(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* R -> R, fn = (fun (N:nat) (x:R) => (-1) ^ N / INR (fact (2 * N)) * x ^ (2 * N)) -> CVN_R fn. Proof. unfold CVN_R in |- *; intros. cut ((r:R) <> 0). intro hyp_r; unfold CVN_r in |- *. exists (fun n:nat => / INR (fact (2 * n)) * r ^ (2 * n)). cut { l:R | Un_cv (fun n:nat => sum_f_R0 (fun k:nat => Rabs (/ INR (fact (2 * k)) * r ^ (2 * k))) n) l }. intros (x,p). exists x. split. apply p. intros; rewrite H; unfold Rdiv in |- *; do 2 rewrite Rabs_mult. rewrite pow_1_abs; rewrite Rmult_1_l. cut (0 < / INR (fact (2 * n))). intro; rewrite (Rabs_right _ (Rle_ge _ _ (Rlt_le _ _ H1))). apply Rmult_le_compat_l. left; apply H1. rewrite <- RPow_abs; apply pow_maj_Rabs. rewrite Rabs_Rabsolu. unfold Boule in H0; rewrite Rminus_0_r in H0. left; apply H0. apply Rinv_0_lt_compat; apply INR_fact_lt_0. apply Alembert_C2. intro; apply Rabs_no_R0. apply prod_neq_R0. apply Rinv_neq_0_compat. apply INR_fact_neq_0. apply pow_nonzero; assumption. assert (H0 := Alembert_cos). unfold cos_n in H0; unfold Un_cv in H0; unfold Un_cv in |- *; intros. cut (0 < eps / Rsqr r). intro; elim (H0 _ H2); intros N0 H3. exists N0; intros. unfold R_dist in |- *; assert (H5 := H3 _ H4). unfold R_dist in H5; replace (Rabs (Rabs (/ INR (fact (2 * S n)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n)) * r ^ (2 * n)))) with (Rsqr r * Rabs ((-1) ^ S n / INR (fact (2 * S n)) / ((-1) ^ n / INR (fact (2 * n))))). apply Rmult_lt_reg_l with (/ Rsqr r). apply Rinv_0_lt_compat; apply Rsqr_pos_lt; assumption. pattern (/ Rsqr r) at 1 in |- *; replace (/ Rsqr r) with (Rabs (/ Rsqr r)). rewrite <- Rabs_mult; rewrite Rmult_minus_distr_l; rewrite Rmult_0_r; rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_l; rewrite <- (Rmult_comm eps); apply H5. unfold Rsqr in |- *; apply prod_neq_R0; assumption. rewrite Rabs_Rinv. rewrite Rabs_right. reflexivity. apply Rle_ge; apply Rle_0_sqr. unfold Rsqr in |- *; apply prod_neq_R0; assumption. rewrite (Rmult_comm (Rsqr r)); unfold Rdiv in |- *; repeat rewrite Rabs_mult; rewrite Rabs_Rabsolu; rewrite pow_1_abs; rewrite Rmult_1_l; repeat rewrite Rmult_assoc; apply Rmult_eq_compat_l. rewrite Rabs_Rinv. rewrite Rabs_mult; rewrite (pow_1_abs n); rewrite Rmult_1_l; rewrite <- Rabs_Rinv. rewrite Rinv_involutive. rewrite Rinv_mult_distr. rewrite Rabs_Rinv. rewrite Rinv_involutive. rewrite (Rmult_comm (Rabs (Rabs (r ^ (2 * S n))))); rewrite Rabs_mult; rewrite Rabs_Rabsolu; rewrite Rmult_assoc; apply Rmult_eq_compat_l. rewrite Rabs_Rinv. do 2 rewrite Rabs_Rabsolu; repeat rewrite Rabs_right. replace (r ^ (2 * S n)) with (r ^ (2 * n) * r * r). repeat rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym. unfold Rsqr in |- *; ring. apply pow_nonzero; assumption. replace (2 * S n)%nat with (S (S (2 * n))). simpl in |- *; ring. ring. apply Rle_ge; apply pow_le; left; apply (cond_pos r). apply Rle_ge; apply pow_le; left; apply (cond_pos r). apply Rabs_no_R0; apply pow_nonzero; assumption. apply Rabs_no_R0; apply INR_fact_neq_0. apply INR_fact_neq_0. apply Rabs_no_R0; apply Rinv_neq_0_compat; apply INR_fact_neq_0. apply Rabs_no_R0; apply pow_nonzero; assumption. apply INR_fact_neq_0. apply Rinv_neq_0_compat; apply INR_fact_neq_0. apply prod_neq_R0. apply pow_nonzero; discrR. apply Rinv_neq_0_compat; apply INR_fact_neq_0. unfold Rdiv in |- *; apply Rmult_lt_0_compat. apply H1. apply Rinv_0_lt_compat; apply Rsqr_pos_lt; assumption. assert (H0 := cond_pos r); red in |- *; intro; rewrite H1 in H0; elim (Rlt_irrefl _ H0). Qed. (**********) Lemma continuity_cos : continuity cos. Proof. set (fn := fun (N:nat) (x:R) => (-1) ^ N / INR (fact (2 * N)) * x ^ (2 * N)). cut (CVN_R fn). intro; cut (forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }). intro cv; cut (forall n:nat, continuity (fn n)). intro; cut (forall x:R, cos x = SFL fn cv x). intro; cut (continuity (SFL fn cv) -> continuity cos). intro; apply H1. apply SFL_continuity; assumption. unfold continuity in |- *; unfold continuity_pt in |- *; unfold continue_in in |- *; unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *; unfold R_dist in |- *; intros. elim (H1 x _ H2); intros. exists x0; intros. elim H3; intros. split. apply H4. intros; rewrite (H0 x); rewrite (H0 x1); apply H5; apply H6. intro; unfold cos, SFL in |- *. case (cv x) as (x1,HUn); case (exist_cos (Rsqr x)) as (x0,Hcos); intros. symmetry; eapply UL_sequence. apply HUn. unfold cos_in, infinite_sum in Hcos; unfold Un_cv in |- *; intros. elim (Hcos _ H0); intros N0 H1. exists N0; intros. unfold R_dist in H1; unfold R_dist, SP in |- *. replace (sum_f_R0 (fun k:nat => fn k x) n) with (sum_f_R0 (fun i:nat => cos_n i * Rsqr x ^ i) n). apply H1; assumption. apply sum_eq; intros. unfold cos_n, fn in |- *; apply Rmult_eq_compat_l. unfold Rsqr in |- *; rewrite pow_sqr; reflexivity. intro; unfold fn in |- *; replace (fun x:R => (-1) ^ n / INR (fact (2 * n)) * x ^ (2 * n)) with (fct_cte ((-1) ^ n / INR (fact (2 * n))) * pow_fct (2 * n))%F; [ idtac | reflexivity ]. apply continuity_mult. apply derivable_continuous; apply derivable_const. apply derivable_continuous; apply (derivable_pow (2 * n)). apply CVN_R_CVS; apply X. apply CVN_R_cos; unfold fn in |- *; reflexivity. Qed. Lemma sin_gt_cos_7_8 : sin (7 / 8) > cos (7 / 8). Proof. assert (lo1 : 0 <= 7/8) by lra. assert (up1 : 7/8 <= 4) by lra. assert (lo : -2 <= 7/8) by lra. assert (up : 7/8 <= 2) by lra. destruct (pre_sin_bound _ 0 lo1 up1) as [lower _ ]. destruct (pre_cos_bound _ 0 lo up) as [_ upper]. apply Rle_lt_trans with (1 := upper). apply Rlt_le_trans with (2 := lower). unfold cos_approx, sin_approx. simpl sum_f_R0. unfold cos_term, sin_term; simpl fact; rewrite !INR_IZR_INZ. simpl plus; simpl mult; simpl Z_of_nat. field_simplify. match goal with |- IZR ?a / ?b < ?c / ?d => apply Rmult_lt_reg_r with d;[apply (IZR_lt 0); reflexivity | unfold Rdiv at 2; rewrite Rmult_assoc, Rinv_l, Rmult_1_r, Rmult_comm; [ |apply not_eq_sym, Rlt_not_eq, (IZR_lt 0); reflexivity ]]; apply Rmult_lt_reg_r with b;[apply (IZR_lt 0); reflexivity | ] end. unfold Rdiv; rewrite !Rmult_assoc, Rinv_l, Rmult_1_r; [ | apply not_eq_sym, Rlt_not_eq, (IZR_lt 0); reflexivity]. rewrite <- !mult_IZR. apply IZR_lt; reflexivity. Qed. Definition PI_2_aux : {z | 7/8 <= z <= 7/4 /\ -cos z = 0}. assert (cc : continuity (fun r =>- cos r)). apply continuity_opp, continuity_cos. assert (cvp : 0 < cos (7/8)). assert (int78 : -2 <= 7/8 <= 2) by (split; lra). destruct int78 as [lower upper]. case (pre_cos_bound _ 0 lower upper). unfold cos_approx; simpl sum_f_R0; unfold cos_term. intros cl _; apply Rlt_le_trans with (2 := cl); simpl. lra. assert (cun : cos (7/4) < 0). replace (7/4) with (7/8 + 7/8) by field. rewrite cos_plus. apply Rlt_minus; apply Rsqr_incrst_1. exact sin_gt_cos_7_8. apply Rlt_le; assumption. apply Rlt_le; apply Rlt_trans with (1 := cvp); exact sin_gt_cos_7_8. apply IVT; auto; lra. Qed. Definition PI2 := proj1_sig PI_2_aux. Definition PI := 2 * PI2. Lemma cos_pi2 : cos PI2 = 0. unfold PI2; case PI_2_aux; simpl. intros x [_ q]; rewrite <- (Ropp_involutive (cos x)), q; apply Ropp_0. Qed. Lemma pi2_int : 7/8 <= PI2 <= 7/4. unfold PI2; case PI_2_aux; simpl; tauto. Qed. (**********) Lemma cos_minus : forall x y:R, cos (x - y) = cos x * cos y + sin x * sin y. Proof. intros; unfold Rminus in |- *; rewrite cos_plus. rewrite <- cos_sym; rewrite sin_antisym; ring. Qed. (**********) Lemma sin2_cos2 : forall x:R, Rsqr (sin x) + Rsqr (cos x) = 1. Proof. intro; unfold Rsqr in |- *; rewrite Rplus_comm; rewrite <- (cos_minus x x); unfold Rminus in |- *; rewrite Rplus_opp_r; apply cos_0. Qed. Lemma cos2 : forall x:R, Rsqr (cos x) = 1 - Rsqr (sin x). Proof. intros x; rewrite <- (sin2_cos2 x); ring. Qed. Lemma sin2 : forall x:R, Rsqr (sin x) = 1 - Rsqr (cos x). Proof. intro x; generalize (cos2 x); intro H1; rewrite H1. unfold Rminus in |- *; rewrite Ropp_plus_distr; rewrite <- Rplus_assoc; rewrite Rplus_opp_r; rewrite Rplus_0_l; symmetry in |- *; apply Ropp_involutive. Qed. (**********) Lemma cos_PI2 : cos (PI / 2) = 0. Proof. unfold PI; generalize cos_pi2; replace ((2 * PI2)/2) with PI2 by field; tauto. Qed. Lemma sin_pos_tech : forall x, 0 < x < 2 -> 0 < sin x. intros x [int1 int2]. assert (lo : 0 <= x) by (apply Rlt_le; assumption). assert (up : x <= 4) by (apply Rlt_le, Rlt_trans with (1:=int2); lra). destruct (pre_sin_bound _ 0 lo up) as [t _]; clear lo up. apply Rlt_le_trans with (2:= t); clear t. unfold sin_approx; simpl sum_f_R0; unfold sin_term; simpl. match goal with |- _ < ?a => replace a with (x * (1 - x^2/6)) by (simpl; field) end. assert (t' : x ^ 2 <= 4). replace 4 with (2 ^ 2) by field. apply (pow_incr x 2); split; apply Rlt_le; assumption. apply Rmult_lt_0_compat;[assumption | lra ]. Qed. Lemma sin_PI2 : sin (PI / 2) = 1. replace (PI / 2) with PI2 by (unfold PI; field). assert (int' : 0 < PI2 < 2). destruct pi2_int; split; lra. assert (lo2 := sin_pos_tech PI2 int'). assert (t2 : Rabs (sin PI2) = 1). rewrite <- Rabs_R1; apply Rsqr_eq_abs_0. rewrite Rsqr_1, sin2, cos_pi2, Rsqr_0, Rminus_0_r; reflexivity. revert t2; rewrite Rabs_pos_eq;[| apply Rlt_le]; tauto. Qed. Lemma PI_RGT_0 : PI > 0. Proof. unfold PI; destruct pi2_int; lra. Qed. Lemma PI_4 : PI <= 4. Proof. unfold PI; destruct pi2_int; lra. Qed. (**********) Lemma PI_neq0 : PI <> 0. Proof. red in |- *; intro; assert (H0 := PI_RGT_0); rewrite H in H0; elim (Rlt_irrefl _ H0). Qed. (**********) Lemma cos_PI : cos PI = -1. Proof. replace PI with (PI / 2 + PI / 2). rewrite cos_plus. rewrite sin_PI2; rewrite cos_PI2. ring. symmetry in |- *; apply double_var. Qed. Lemma sin_PI : sin PI = 0. Proof. assert (H := sin2_cos2 PI). rewrite cos_PI in H. change (-1) with (-(1)) in H. rewrite <- Rsqr_neg in H. rewrite Rsqr_1 in H. cut (Rsqr (sin PI) = 0). intro; apply (Rsqr_eq_0 _ H0). apply Rplus_eq_reg_l with 1. rewrite Rplus_0_r; rewrite Rplus_comm; exact H. Qed. Lemma sin_bound : forall (a : R) (n : nat), 0 <= a -> a <= PI -> sin_approx a (2 * n + 1) <= sin a <= sin_approx a (2 * (n + 1)). Proof. intros a n a0 api; apply pre_sin_bound. assumption. apply Rle_trans with (1:= api) (2 := PI_4). Qed. Lemma cos_bound : forall (a : R) (n : nat), - PI / 2 <= a -> a <= PI / 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1)). Proof. intros a n lower upper; apply pre_cos_bound. apply Rle_trans with (2 := lower). apply Rmult_le_reg_r with 2; [lra |]. replace ((-PI/2) * 2) with (-PI) by field. assert (t := PI_4); lra. apply Rle_trans with (1 := upper). apply Rmult_le_reg_r with 2; [lra | ]. replace ((PI/2) * 2) with PI by field. generalize PI_4; intros; lra. Qed. (**********) Lemma neg_cos : forall x:R, cos (x + PI) = - cos x. Proof. intro x; rewrite cos_plus; rewrite sin_PI; rewrite cos_PI; ring. Qed. (**********) Lemma sin_cos : forall x:R, sin x = - cos (PI / 2 + x). Proof. intro x; rewrite cos_plus; rewrite sin_PI2; rewrite cos_PI2; ring. Qed. (**********) Lemma sin_plus : forall x y:R, sin (x + y) = sin x * cos y + cos x * sin y. Proof. intros. rewrite (sin_cos (x + y)). replace (PI / 2 + (x + y)) with (PI / 2 + x + y); [ rewrite cos_plus | ring ]. rewrite (sin_cos (PI / 2 + x)). replace (PI / 2 + (PI / 2 + x)) with (x + PI). rewrite neg_cos. replace (cos (PI / 2 + x)) with (- sin x). ring. rewrite sin_cos; rewrite Ropp_involutive; reflexivity. pattern PI at 1 in |- *; rewrite (double_var PI); ring. Qed. Lemma sin_minus : forall x y:R, sin (x - y) = sin x * cos y - cos x * sin y. Proof. intros; unfold Rminus in |- *; rewrite sin_plus. rewrite <- cos_sym; rewrite sin_antisym; ring. Qed. (**********) Definition tan (x:R) : R := sin x / cos x. Lemma tan_plus : forall x y:R, cos x <> 0 -> cos y <> 0 -> cos (x + y) <> 0 -> 1 - tan x * tan y <> 0 -> tan (x + y) = (tan x + tan y) / (1 - tan x * tan y). Proof. intros; unfold tan in |- *; rewrite sin_plus; rewrite cos_plus; unfold Rdiv in |- *; replace (cos x * cos y - sin x * sin y) with (cos x * cos y * (1 - sin x * / cos x * (sin y * / cos y))). rewrite Rinv_mult_distr. repeat rewrite <- Rmult_assoc; replace ((sin x * cos y + cos x * sin y) * / (cos x * cos y)) with (sin x * / cos x + sin y * / cos y). reflexivity. rewrite Rmult_plus_distr_r; rewrite Rinv_mult_distr. repeat rewrite Rmult_assoc; repeat rewrite (Rmult_comm (sin x)); repeat rewrite <- Rmult_assoc. repeat rewrite Rinv_r_simpl_m; [ reflexivity | assumption | assumption ]. assumption. assumption. apply prod_neq_R0; assumption. assumption. unfold Rminus in |- *; rewrite Rmult_plus_distr_l; rewrite Rmult_1_r; apply Rplus_eq_compat_l; repeat rewrite Rmult_assoc; rewrite (Rmult_comm (sin x)); rewrite (Rmult_comm (cos y)); rewrite <- Ropp_mult_distr_r_reverse; repeat rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym. rewrite Rmult_1_l; rewrite (Rmult_comm (sin x)); rewrite <- Ropp_mult_distr_r_reverse; repeat rewrite Rmult_assoc; apply Rmult_eq_compat_l; rewrite (Rmult_comm (/ cos y)); rewrite Rmult_assoc; rewrite <- Rinv_r_sym. apply Rmult_1_r. assumption. assumption. Qed. (*******************************************************) (** * Some properties of cos, sin and tan *) (*******************************************************) Lemma sin_2a : forall x:R, sin (2 * x) = 2 * sin x * cos x. Proof. intro x; rewrite double; rewrite sin_plus. rewrite <- (Rmult_comm (sin x)); symmetry in |- *; rewrite Rmult_assoc; apply double. Qed. Lemma cos_2a : forall x:R, cos (2 * x) = cos x * cos x - sin x * sin x. Proof. intro x; rewrite double; apply cos_plus. Qed. Lemma cos_2a_cos : forall x:R, cos (2 * x) = 2 * cos x * cos x - 1. Proof. intro x; rewrite double; unfold Rminus in |- *; rewrite Rmult_assoc; rewrite cos_plus; generalize (sin2_cos2 x); rewrite double; intro H1; rewrite <- H1; ring_Rsqr. Qed. Lemma cos_2a_sin : forall x:R, cos (2 * x) = 1 - 2 * sin x * sin x. Proof. intro x; rewrite Rmult_assoc; unfold Rminus in |- *; repeat rewrite double. generalize (sin2_cos2 x); intro H1; rewrite <- H1; rewrite cos_plus; ring_Rsqr. Qed. Lemma tan_2a : forall x:R, cos x <> 0 -> cos (2 * x) <> 0 -> 1 - tan x * tan x <> 0 -> tan (2 * x) = 2 * tan x / (1 - tan x * tan x). Proof. repeat rewrite double; intros; repeat rewrite double; rewrite double in H0; apply tan_plus; assumption. Qed. Lemma sin_neg : forall x:R, sin (- x) = - sin x. Proof. apply sin_antisym. Qed. Lemma cos_neg : forall x:R, cos (- x) = cos x. Proof. intro; symmetry in |- *; apply cos_sym. Qed. Lemma tan_0 : tan 0 = 0. Proof. unfold tan in |- *; rewrite sin_0; rewrite cos_0. unfold Rdiv in |- *; apply Rmult_0_l. Qed. Lemma tan_neg : forall x:R, tan (- x) = - tan x. Proof. intros x; unfold tan in |- *; rewrite sin_neg; rewrite cos_neg; unfold Rdiv in |- *. apply Ropp_mult_distr_l_reverse. Qed. Lemma tan_minus : forall x y:R, cos x <> 0 -> cos y <> 0 -> cos (x - y) <> 0 -> 1 + tan x * tan y <> 0 -> tan (x - y) = (tan x - tan y) / (1 + tan x * tan y). Proof. intros; unfold Rminus in |- *; rewrite tan_plus. rewrite tan_neg; unfold Rminus in |- *; rewrite <- Ropp_mult_distr_l_reverse; rewrite Rmult_opp_opp; reflexivity. assumption. rewrite cos_neg; assumption. assumption. rewrite tan_neg; unfold Rminus in |- *; rewrite <- Ropp_mult_distr_l_reverse; rewrite Rmult_opp_opp; assumption. Qed. Lemma cos_3PI2 : cos (3 * (PI / 2)) = 0. Proof. replace (3 * (PI / 2)) with (PI + PI / 2). rewrite cos_plus; rewrite sin_PI; rewrite cos_PI2; ring. pattern PI at 1 in |- *; rewrite (double_var PI). ring. Qed. Lemma sin_2PI : sin (2 * PI) = 0. Proof. rewrite sin_2a; rewrite sin_PI; ring. Qed. Lemma cos_2PI : cos (2 * PI) = 1. Proof. rewrite cos_2a; rewrite sin_PI; rewrite cos_PI; ring. Qed. Lemma neg_sin : forall x:R, sin (x + PI) = - sin x. Proof. intro x; rewrite sin_plus; rewrite sin_PI; rewrite cos_PI; ring. Qed. Lemma sin_PI_x : forall x:R, sin (PI - x) = sin x. Proof. intro x; rewrite sin_minus; rewrite sin_PI; rewrite cos_PI. ring. Qed. Lemma sin_period : forall (x:R) (k:nat), sin (x + 2 * INR k * PI) = sin x. Proof. intros x k; induction k as [| k Hreck]. simpl in |- *; ring_simplify (x + 2 * 0 * PI). trivial. replace (x + 2 * INR (S k) * PI) with (x + 2 * INR k * PI + 2 * PI). rewrite sin_plus in |- *; rewrite sin_2PI in |- *; rewrite cos_2PI in |- *. ring_simplify; trivial. rewrite S_INR in |- *; ring. Qed. Lemma cos_period : forall (x:R) (k:nat), cos (x + 2 * INR k * PI) = cos x. Proof. intros x k; induction k as [| k Hreck]. simpl in |- *; ring_simplify (x + 2 * 0 * PI). trivial. replace (x + 2 * INR (S k) * PI) with (x + 2 * INR k * PI + 2 * PI). rewrite cos_plus in |- *; rewrite sin_2PI in |- *; rewrite cos_2PI in |- *. ring_simplify; trivial. rewrite S_INR in |- *; ring. Qed. Lemma sin_shift : forall x:R, sin (PI / 2 - x) = cos x. Proof. intro x; rewrite sin_minus; rewrite sin_PI2; rewrite cos_PI2; ring. Qed. Lemma cos_shift : forall x:R, cos (PI / 2 - x) = sin x. Proof. intro x; rewrite cos_minus; rewrite sin_PI2; rewrite cos_PI2; ring. Qed. Lemma cos_sin : forall x:R, cos x = sin (PI / 2 + x). Proof. intro x; rewrite sin_plus; rewrite sin_PI2; rewrite cos_PI2; ring. Qed. Lemma PI2_RGT_0 : 0 < PI / 2. Proof. unfold Rdiv in |- *; apply Rmult_lt_0_compat; [ apply PI_RGT_0 | apply Rinv_0_lt_compat; prove_sup ]. Qed. Lemma SIN_bound : forall x:R, -1 <= sin x <= 1. Proof. intro; destruct (Rle_dec (-1) (sin x)) as [Hle|Hnle]. destruct (Rle_dec (sin x) 1) as [Hle'|Hnle']. split; assumption. cut (1 < sin x). intro; generalize (Rsqr_incrst_1 1 (sin x) H (Rlt_le 0 1 Rlt_0_1) (Rlt_le 0 (sin x) (Rlt_trans 0 1 (sin x) Rlt_0_1 H))); rewrite Rsqr_1; intro; rewrite sin2 in H0; unfold Rminus in H0. generalize (Rplus_lt_compat_l (-1) 1 (1 + - Rsqr (cos x)) H0); repeat rewrite <- Rplus_assoc; change (-1) with (-(1)); rewrite Rplus_opp_l; rewrite Rplus_0_l; intro; rewrite <- Ropp_0 in H1; generalize (Ropp_lt_gt_contravar (-0) (- Rsqr (cos x)) H1); repeat rewrite Ropp_involutive; intro; generalize (Rle_0_sqr (cos x)); intro; elim (Rlt_irrefl 0 (Rle_lt_trans 0 (Rsqr (cos x)) 0 H3 H2)). auto with real. cut (sin x < -1). intro; generalize (Ropp_lt_gt_contravar (sin x) (-1) H); change (-1) with (-(1)); rewrite Ropp_involutive; clear H; intro; generalize (Rsqr_incrst_1 1 (- sin x) H (Rlt_le 0 1 Rlt_0_1) (Rlt_le 0 (- sin x) (Rlt_trans 0 1 (- sin x) Rlt_0_1 H))); rewrite Rsqr_1; intro; rewrite <- Rsqr_neg in H0; rewrite sin2 in H0; unfold Rminus in H0; generalize (Rplus_lt_compat_l (-1) 1 (1 + - Rsqr (cos x)) H0); rewrite <- Rplus_assoc; change (-1) with (-(1)); rewrite Rplus_opp_l; rewrite Rplus_0_l; intro; rewrite <- Ropp_0 in H1; generalize (Ropp_lt_gt_contravar (-0) (- Rsqr (cos x)) H1); repeat rewrite Ropp_involutive; intro; generalize (Rle_0_sqr (cos x)); intro; elim (Rlt_irrefl 0 (Rle_lt_trans 0 (Rsqr (cos x)) 0 H3 H2)). auto with real. Qed. Lemma COS_bound : forall x:R, -1 <= cos x <= 1. Proof. intro; rewrite <- sin_shift; apply SIN_bound. Qed. Lemma cos_sin_0 : forall x:R, ~ (cos x = 0 /\ sin x = 0). Proof. intro; red in |- *; intro; elim H; intros; generalize (sin2_cos2 x); intro; rewrite H0 in H2; rewrite H1 in H2; repeat rewrite Rsqr_0 in H2; rewrite Rplus_0_r in H2; generalize Rlt_0_1; intro; rewrite <- H2 in H3; elim (Rlt_irrefl 0 H3). Qed. Lemma cos_sin_0_var : forall x:R, cos x <> 0 \/ sin x <> 0. Proof. intros x. destruct (Req_dec (cos x) 0). 2: now left. right. intros H'. apply (cos_sin_0 x). now split. Qed. (*****************************************************************) (** * Using series definitions of cos and sin *) (*****************************************************************) Definition sin_lb (a:R) : R := sin_approx a 3. Definition sin_ub (a:R) : R := sin_approx a 4. Definition cos_lb (a:R) : R := cos_approx a 3. Definition cos_ub (a:R) : R := cos_approx a 4. Lemma sin_lb_gt_0 : forall a:R, 0 < a -> a <= PI / 2 -> 0 < sin_lb a. Proof. intros. unfold sin_lb in |- *; unfold sin_approx in |- *; unfold sin_term in |- *. set (Un := fun i:nat => a ^ (2 * i + 1) / INR (fact (2 * i + 1))). replace (sum_f_R0 (fun i:nat => (-1) ^ i * (a ^ (2 * i + 1) / INR (fact (2 * i + 1)))) 3) with (sum_f_R0 (fun i:nat => (-1) ^ i * Un i) 3); [ idtac | apply sum_eq; intros; unfold Un in |- *; reflexivity ]. cut (forall n:nat, Un (S n) < Un n). intro; simpl in |- *. repeat rewrite Rmult_1_l; repeat rewrite Rmult_1_r; replace (-1 * Un 1%nat) with (- Un 1%nat); [ idtac | ring ]; replace (-1 * -1 * Un 2%nat) with (Un 2%nat); [ idtac | ring ]; replace (-1 * (-1 * -1) * Un 3%nat) with (- Un 3%nat); [ idtac | ring ]; replace (Un 0%nat + - Un 1%nat + Un 2%nat + - Un 3%nat) with (Un 0%nat - Un 1%nat + (Un 2%nat - Un 3%nat)); [ idtac | ring ]. apply Rplus_lt_0_compat. unfold Rminus in |- *; apply Rplus_lt_reg_l with (Un 1%nat); rewrite Rplus_0_r; rewrite (Rplus_comm (Un 1%nat)); rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r; apply H1. unfold Rminus in |- *; apply Rplus_lt_reg_l with (Un 3%nat); rewrite Rplus_0_r; rewrite (Rplus_comm (Un 3%nat)); rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r; apply H1. intro; unfold Un in |- *. cut ((2 * S n + 1)%nat = (2 * n + 1 + 2)%nat). intro; rewrite H1. rewrite pow_add; unfold Rdiv in |- *; rewrite Rmult_assoc; apply Rmult_lt_compat_l. apply pow_lt; assumption. rewrite <- H1; apply Rmult_lt_reg_l with (INR (fact (2 * n + 1))). apply lt_INR_0; apply neq_O_lt. assert (H2 := fact_neq_0 (2 * n + 1)). red in |- *; intro; elim H2; symmetry in |- *; assumption. rewrite <- Rinv_r_sym. apply Rmult_lt_reg_l with (INR (fact (2 * S n + 1))). apply lt_INR_0; apply neq_O_lt. assert (H2 := fact_neq_0 (2 * S n + 1)). red in |- *; intro; elim H2; symmetry in |- *; assumption. rewrite (Rmult_comm (INR (fact (2 * S n + 1)))); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym. do 2 rewrite Rmult_1_r; apply Rle_lt_trans with (INR (fact (2 * n + 1)) * 4). apply Rmult_le_compat_l. apply pos_INR. simpl in |- *; rewrite Rmult_1_r; change 4 with (Rsqr 2); apply Rsqr_incr_1. apply Rle_trans with (PI / 2); [ assumption | unfold Rdiv in |- *; apply Rmult_le_reg_l with 2; [ prove_sup0 | rewrite <- Rmult_assoc; rewrite Rinv_r_simpl_m; [ apply PI_4 | discrR ] ] ]. left; assumption. left; prove_sup0. rewrite H1; replace (2 * n + 1 + 2)%nat with (S (S (2 * n + 1))). do 2 rewrite fact_simpl; do 2 rewrite mult_INR. repeat rewrite <- Rmult_assoc. rewrite <- (Rmult_comm (INR (fact (2 * n + 1)))). apply Rmult_lt_compat_l. apply lt_INR_0; apply neq_O_lt. assert (H2 := fact_neq_0 (2 * n + 1)). red in |- *; intro; elim H2; symmetry in |- *; assumption. do 2 rewrite S_INR; rewrite plus_INR; rewrite mult_INR; set (x := INR n); unfold INR in |- *. replace (((1 + 1) * x + 1 + 1 + 1) * ((1 + 1) * x + 1 + 1)) with (4 * x * x + 10 * x + 6); [ idtac | ring ]. apply Rplus_lt_reg_l with (-(4)); rewrite Rplus_opp_l; replace (-(4) + (4 * x * x + 10 * x + 6)) with (4 * x * x + 10 * x + 2); [ idtac | ring ]. apply Rplus_le_lt_0_compat. cut (0 <= x). intro; apply Rplus_le_le_0_compat; repeat apply Rmult_le_pos; assumption || left; prove_sup. apply pos_INR. now apply IZR_lt. ring. apply INR_fact_neq_0. apply INR_fact_neq_0. ring. Qed. Lemma SIN : forall a:R, 0 <= a -> a <= PI -> sin_lb a <= sin a <= sin_ub a. Proof. intros; unfold sin_lb, sin_ub in |- *; apply (sin_bound a 1 H H0). Qed. Lemma COS : forall a:R, - PI / 2 <= a -> a <= PI / 2 -> cos_lb a <= cos a <= cos_ub a. Proof. intros; unfold cos_lb, cos_ub in |- *; apply (cos_bound a 1 H H0). Qed. (**********) Lemma _PI2_RLT_0 : - (PI / 2) < 0. Proof. assert (H := PI_RGT_0). lra. Qed. Lemma PI4_RLT_PI2 : PI / 4 < PI / 2. Proof. assert (H := PI_RGT_0). lra. Qed. Lemma PI2_Rlt_PI : PI / 2 < PI. Proof. assert (H := PI_RGT_0). lra. Qed. (***************************************************) (** * Increasing and decreasing of [cos] and [sin] *) (***************************************************) Theorem sin_gt_0 : forall x:R, 0 < x -> x < PI -> 0 < sin x. Proof. intros; elim (SIN x (Rlt_le 0 x H) (Rlt_le x PI H0)); intros H1 _; case (Rtotal_order x (PI / 2)); intro H2. apply Rlt_le_trans with (sin_lb x). apply sin_lb_gt_0; [ assumption | left; assumption ]. assumption. elim H2; intro H3. rewrite H3; rewrite sin_PI2; apply Rlt_0_1. rewrite <- sin_PI_x; generalize (Ropp_gt_lt_contravar x (PI / 2) H3); intro H4; generalize (Rplus_lt_compat_l PI (- x) (- (PI / 2)) H4). replace (PI + - (PI / 2)) with (PI / 2). intro H5; generalize (Ropp_lt_gt_contravar x PI H0); intro H6; change (- PI < - x) in H6; generalize (Rplus_lt_compat_l PI (- PI) (- x) H6). rewrite Rplus_opp_r. intro H7; elim (SIN (PI - x) (Rlt_le 0 (PI - x) H7) (Rlt_le (PI - x) PI (Rlt_trans (PI - x) (PI / 2) PI H5 PI2_Rlt_PI))); intros H8 _; generalize (sin_lb_gt_0 (PI - x) H7 (Rlt_le (PI - x) (PI / 2) H5)); intro H9; apply (Rlt_le_trans 0 (sin_lb (PI - x)) (sin (PI - x)) H9 H8). field. Qed. Theorem cos_gt_0 : forall x:R, - (PI / 2) < x -> x < PI / 2 -> 0 < cos x. Proof. intros; rewrite cos_sin; generalize (Rplus_lt_compat_l (PI / 2) (- (PI / 2)) x H). rewrite Rplus_opp_r; intro H1; generalize (Rplus_lt_compat_l (PI / 2) x (PI / 2) H0); rewrite <- double_var; intro H2; apply (sin_gt_0 (PI / 2 + x) H1 H2). Qed. Lemma sin_ge_0 : forall x:R, 0 <= x -> x <= PI -> 0 <= sin x. Proof. intros x H1 H2; elim H1; intro H3; [ elim H2; intro H4; [ left; apply (sin_gt_0 x H3 H4) | rewrite H4; right; symmetry in |- *; apply sin_PI ] | rewrite <- H3; right; symmetry in |- *; apply sin_0 ]. Qed. Lemma cos_ge_0 : forall x:R, - (PI / 2) <= x -> x <= PI / 2 -> 0 <= cos x. Proof. intros x H1 H2; elim H1; intro H3; [ elim H2; intro H4; [ left; apply (cos_gt_0 x H3 H4) | rewrite H4; right; symmetry in |- *; apply cos_PI2 ] | rewrite <- H3; rewrite cos_neg; right; symmetry in |- *; apply cos_PI2 ]. Qed. Lemma sin_le_0 : forall x:R, PI <= x -> x <= 2 * PI -> sin x <= 0. Proof. intros x H1 H2; apply Rge_le; rewrite <- Ropp_0; rewrite <- (Ropp_involutive (sin x)); apply Ropp_le_ge_contravar; rewrite <- neg_sin; replace (x + PI) with (x - PI + 2 * INR 1 * PI); [ rewrite (sin_period (x - PI) 1); apply sin_ge_0; [ replace (x - PI) with (x + - PI); [ rewrite Rplus_comm; replace 0 with (- PI + PI); [ apply Rplus_le_compat_l; assumption | ring ] | ring ] | replace (x - PI) with (x + - PI); rewrite Rplus_comm; [ pattern PI at 2 in |- *; replace PI with (- PI + 2 * PI); [ apply Rplus_le_compat_l; assumption | ring ] | ring ] ] | unfold INR in |- *; ring ]. Qed. Lemma cos_le_0 : forall x:R, PI / 2 <= x -> x <= 3 * (PI / 2) -> cos x <= 0. Proof. intros x H1 H2; apply Rge_le; rewrite <- Ropp_0; rewrite <- (Ropp_involutive (cos x)); apply Ropp_le_ge_contravar; rewrite <- neg_cos; replace (x + PI) with (x - PI + 2 * INR 1 * PI). rewrite cos_period; apply cos_ge_0. replace (- (PI / 2)) with (- PI + PI / 2) by field. unfold Rminus in |- *; rewrite (Rplus_comm x); apply Rplus_le_compat_l; assumption. unfold Rminus in |- *; rewrite Rplus_comm; replace (PI / 2) with (- PI + 3 * (PI / 2)) by field. apply Rplus_le_compat_l; assumption. unfold INR in |- *; ring. Qed. Lemma sin_lt_0 : forall x:R, PI < x -> x < 2 * PI -> sin x < 0. Proof. intros x H1 H2; rewrite <- Ropp_0; rewrite <- (Ropp_involutive (sin x)); apply Ropp_lt_gt_contravar; rewrite <- neg_sin; replace (x + PI) with (x - PI + 2 * INR 1 * PI); [ rewrite (sin_period (x - PI) 1); apply sin_gt_0; [ replace (x - PI) with (x + - PI); [ rewrite Rplus_comm; replace 0 with (- PI + PI); [ apply Rplus_lt_compat_l; assumption | ring ] | ring ] | replace (x - PI) with (x + - PI); rewrite Rplus_comm; [ pattern PI at 2 in |- *; replace PI with (- PI + 2 * PI); [ apply Rplus_lt_compat_l; assumption | ring ] | ring ] ] | unfold INR in |- *; ring ]. Qed. Lemma sin_lt_0_var : forall x:R, - PI < x -> x < 0 -> sin x < 0. Proof. intros; generalize (Rplus_lt_compat_l (2 * PI) (- PI) x H); replace (2 * PI + - PI) with PI; [ intro H1; rewrite Rplus_comm in H1; generalize (Rplus_lt_compat_l (2 * PI) x 0 H0); intro H2; rewrite (Rplus_comm (2 * PI)) in H2; rewrite <- (Rplus_comm 0) in H2; rewrite Rplus_0_l in H2; rewrite <- (sin_period x 1); unfold INR in |- *; replace (2 * 1 * PI) with (2 * PI); [ apply (sin_lt_0 (x + 2 * PI) H1 H2) | ring ] | ring ]. Qed. Lemma cos_lt_0 : forall x:R, PI / 2 < x -> x < 3 * (PI / 2) -> cos x < 0. Proof. intros x H1 H2; rewrite <- Ropp_0; rewrite <- (Ropp_involutive (cos x)); apply Ropp_lt_gt_contravar; rewrite <- neg_cos; replace (x + PI) with (x - PI + 2 * INR 1 * PI). rewrite cos_period; apply cos_gt_0. replace (- (PI / 2)) with (- PI + PI / 2) by field. unfold Rminus in |- *; rewrite (Rplus_comm x); apply Rplus_lt_compat_l; assumption. unfold Rminus in |- *; rewrite Rplus_comm; replace (PI / 2) with (- PI + 3 * (PI / 2)) by field. apply Rplus_lt_compat_l; assumption. unfold INR in |- *; ring. Qed. Lemma tan_gt_0 : forall x:R, 0 < x -> x < PI / 2 -> 0 < tan x. Proof. intros x H1 H2; unfold tan in |- *; generalize _PI2_RLT_0; generalize (Rlt_trans 0 x (PI / 2) H1 H2); intros; generalize (Rlt_trans (- (PI / 2)) 0 x H0 H1); intro H5; generalize (Rlt_trans x (PI / 2) PI H2 PI2_Rlt_PI); intro H7; unfold Rdiv in |- *; apply Rmult_lt_0_compat. apply sin_gt_0; assumption. apply Rinv_0_lt_compat; apply cos_gt_0; assumption. Qed. Lemma tan_lt_0 : forall x:R, - (PI / 2) < x -> x < 0 -> tan x < 0. Proof. intros x H1 H2; unfold tan in |- *; generalize (cos_gt_0 x H1 (Rlt_trans x 0 (PI / 2) H2 PI2_RGT_0)); intro H3; rewrite <- Ropp_0; replace (sin x / cos x) with (- (- sin x / cos x)). rewrite <- sin_neg; apply Ropp_gt_lt_contravar; change (0 < sin (- x) / cos x) in |- *; unfold Rdiv in |- *; apply Rmult_lt_0_compat. apply sin_gt_0. rewrite <- Ropp_0; apply Ropp_gt_lt_contravar; assumption. apply Rlt_trans with (PI / 2). rewrite <- (Ropp_involutive (PI / 2)); apply Ropp_gt_lt_contravar; assumption. apply PI2_Rlt_PI. apply Rinv_0_lt_compat; assumption. unfold Rdiv in |- *; ring. Qed. Lemma cos_ge_0_3PI2 : forall x:R, 3 * (PI / 2) <= x -> x <= 2 * PI -> 0 <= cos x. Proof. intros; rewrite <- cos_neg; rewrite <- (cos_period (- x) 1); unfold INR in |- *; replace (- x + 2 * 1 * PI) with (2 * PI - x) by ring. generalize (Ropp_le_ge_contravar x (2 * PI) H0); intro H1; generalize (Rge_le (- x) (- (2 * PI)) H1); clear H1; intro H1; generalize (Rplus_le_compat_l (2 * PI) (- (2 * PI)) (- x) H1). rewrite Rplus_opp_r. intro H2; generalize (Ropp_le_ge_contravar (3 * (PI / 2)) x H); intro H3; generalize (Rge_le (- (3 * (PI / 2))) (- x) H3); clear H3; intro H3; generalize (Rplus_le_compat_l (2 * PI) (- x) (- (3 * (PI / 2))) H3). replace (2 * PI + - (3 * (PI / 2))) with (PI / 2) by field. intro H4; apply (cos_ge_0 (2 * PI - x) (Rlt_le (- (PI / 2)) (2 * PI - x) (Rlt_le_trans (- (PI / 2)) 0 (2 * PI - x) _PI2_RLT_0 H2)) H4). Qed. Lemma form1 : forall p q:R, cos p + cos q = 2 * cos ((p - q) / 2) * cos ((p + q) / 2). Proof. intros p q; pattern p at 1 in |- *; replace p with ((p - q) / 2 + (p + q) / 2) by field. rewrite <- (cos_neg q); replace (- q) with ((p - q) / 2 - (p + q) / 2) by field. rewrite cos_plus; rewrite cos_minus; ring. Qed. Lemma form2 : forall p q:R, cos p - cos q = -2 * sin ((p - q) / 2) * sin ((p + q) / 2). Proof. intros p q; pattern p at 1 in |- *; replace p with ((p - q) / 2 + (p + q) / 2) by field. rewrite <- (cos_neg q); replace (- q) with ((p - q) / 2 - (p + q) / 2) by field. rewrite cos_plus; rewrite cos_minus; ring. Qed. Lemma form3 : forall p q:R, sin p + sin q = 2 * cos ((p - q) / 2) * sin ((p + q) / 2). Proof. intros p q; pattern p at 1 in |- *; replace p with ((p - q) / 2 + (p + q) / 2). pattern q at 3 in |- *; replace q with ((p + q) / 2 - (p - q) / 2). rewrite sin_plus; rewrite sin_minus; ring. pattern q at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. pattern p at 3 in |- *; rewrite double_var; unfold Rdiv in |- *; ring. Qed. Lemma form4 : forall p q:R, sin p - sin q = 2 * cos ((p + q) / 2) * sin ((p - q) / 2). Proof. intros p q; pattern p at 1 in |- *; replace p with ((p - q) / 2 + (p + q) / 2) by field. pattern q at 3 in |- *; replace q with ((p + q) / 2 - (p - q) / 2) by field. rewrite sin_plus; rewrite sin_minus; ring. Qed. Lemma sin_increasing_0 : forall x y:R, - (PI / 2) <= x -> x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> sin x < sin y -> x < y. Proof. intros; cut (sin ((x - y) / 2) < 0). intro H4; case (Rtotal_order ((x - y) / 2) 0); intro H5. assert (Hyp : 0 < 2). prove_sup0. generalize (Rmult_lt_compat_l 2 ((x - y) / 2) 0 Hyp H5). unfold Rdiv in |- *. rewrite <- Rmult_assoc. rewrite Rinv_r_simpl_m. rewrite Rmult_0_r. clear H5; intro H5; apply Rminus_lt; assumption. discrR. elim H5; intro H6. rewrite H6 in H4; rewrite sin_0 in H4; elim (Rlt_irrefl 0 H4). change (0 < (x - y) / 2) in H6; generalize (Ropp_le_ge_contravar (- (PI / 2)) y H1). rewrite Ropp_involutive. intro H7; generalize (Rge_le (PI / 2) (- y) H7); clear H7; intro H7; generalize (Rplus_le_compat x (PI / 2) (- y) (PI / 2) H0 H7). rewrite <- double_var. intro H8. assert (Hyp : 0 < 2). prove_sup0. generalize (Rmult_le_compat_l (/ 2) (x - y) PI (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H8). repeat rewrite (Rmult_comm (/ 2)). intro H9; generalize (sin_gt_0 ((x - y) / 2) H6 (Rle_lt_trans ((x - y) / 2) (PI / 2) PI H9 PI2_Rlt_PI)); intro H10; elim (Rlt_irrefl (sin ((x - y) / 2)) (Rlt_trans (sin ((x - y) / 2)) 0 (sin ((x - y) / 2)) H4 H10)). generalize (Rlt_minus (sin x) (sin y) H3); clear H3; intro H3; rewrite form4 in H3; generalize (Rplus_le_compat x (PI / 2) y (PI / 2) H0 H2). rewrite <- double_var. assert (Hyp : 0 < 2). prove_sup0. intro H4; generalize (Rmult_le_compat_l (/ 2) (x + y) PI (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H4). repeat rewrite (Rmult_comm (/ 2)). clear H4; intro H4; generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) y H H1); replace (- (PI / 2) + - (PI / 2)) with (- PI) by field. intro H5; generalize (Rmult_le_compat_l (/ 2) (- PI) (x + y) (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H5). replace (/ 2 * (x + y)) with ((x + y) / 2) by apply Rmult_comm. replace (/ 2 * - PI) with (- (PI / 2)) by field. clear H5; intro H5; elim H4; intro H40. elim H5; intro H50. generalize (cos_gt_0 ((x + y) / 2) H50 H40); intro H6; generalize (Rmult_lt_compat_l 2 0 (cos ((x + y) / 2)) Hyp H6). rewrite Rmult_0_r. clear H6; intro H6; case (Rcase_abs (sin ((x - y) / 2))); intro H7. assumption. generalize (Rge_le (sin ((x - y) / 2)) 0 H7); clear H7; intro H7; generalize (Rmult_le_pos (2 * cos ((x + y) / 2)) (sin ((x - y) / 2)) (Rlt_le 0 (2 * cos ((x + y) / 2)) H6) H7); intro H8; generalize (Rle_lt_trans 0 (2 * cos ((x + y) / 2) * sin ((x - y) / 2)) 0 H8 H3); intro H9; elim (Rlt_irrefl 0 H9). rewrite <- H50 in H3; rewrite cos_neg in H3; rewrite cos_PI2 in H3; rewrite Rmult_0_r in H3; rewrite Rmult_0_l in H3; elim (Rlt_irrefl 0 H3). unfold Rdiv in H3. rewrite H40 in H3; assert (H50 := cos_PI2); unfold Rdiv in H50; rewrite H50 in H3; rewrite Rmult_0_r in H3; rewrite Rmult_0_l in H3; elim (Rlt_irrefl 0 H3). Qed. Lemma sin_increasing_1 : forall x y:R, - (PI / 2) <= x -> x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> x < y -> sin x < sin y. Proof. intros; generalize (Rplus_lt_compat_l x x y H3); intro H4; generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) x H H); replace (- (PI / 2) + - (PI / 2)) with (- PI) by field. assert (Hyp : 0 < 2). prove_sup0. intro H5; generalize (Rle_lt_trans (- PI) (x + x) (x + y) H5 H4); intro H6; generalize (Rmult_lt_compat_l (/ 2) (- PI) (x + y) (Rinv_0_lt_compat 2 Hyp) H6); replace (/ 2 * - PI) with (- (PI / 2)) by field. replace (/ 2 * (x + y)) with ((x + y) / 2) by apply Rmult_comm. clear H4 H5 H6; intro H4; generalize (Rplus_lt_compat_l y x y H3); intro H5; rewrite Rplus_comm in H5; generalize (Rplus_le_compat y (PI / 2) y (PI / 2) H2 H2). rewrite <- double_var. intro H6; generalize (Rlt_le_trans (x + y) (y + y) PI H5 H6); intro H7; generalize (Rmult_lt_compat_l (/ 2) (x + y) PI (Rinv_0_lt_compat 2 Hyp) H7); replace (/ 2 * PI) with (PI / 2) by apply Rmult_comm. replace (/ 2 * (x + y)) with ((x + y) / 2) by apply Rmult_comm. clear H5 H6 H7; intro H5; generalize (Ropp_le_ge_contravar (- (PI / 2)) y H1); rewrite Ropp_involutive; clear H1; intro H1; generalize (Rge_le (PI / 2) (- y) H1); clear H1; intro H1; generalize (Ropp_le_ge_contravar y (PI / 2) H2); clear H2; intro H2; generalize (Rge_le (- y) (- (PI / 2)) H2); clear H2; intro H2; generalize (Rplus_lt_compat_l (- y) x y H3); replace (- y + x) with (x - y) by apply Rplus_comm. rewrite Rplus_opp_l. intro H6; generalize (Rmult_lt_compat_l (/ 2) (x - y) 0 (Rinv_0_lt_compat 2 Hyp) H6); rewrite Rmult_0_r; replace (/ 2 * (x - y)) with ((x - y) / 2) by apply Rmult_comm. clear H6; intro H6; generalize (Rplus_le_compat (- (PI / 2)) x (- (PI / 2)) (- y) H H2); replace (- (PI / 2) + - (PI / 2)) with (- PI) by field. intro H7; generalize (Rmult_le_compat_l (/ 2) (- PI) (x - y) (Rlt_le 0 (/ 2) (Rinv_0_lt_compat 2 Hyp)) H7); replace (/ 2 * - PI) with (- (PI / 2)) by field. replace (/ 2 * (x - y)) with ((x - y) / 2) by apply Rmult_comm. clear H7; intro H7; clear H H0 H1 H2; apply Rminus_lt; rewrite form4; generalize (cos_gt_0 ((x + y) / 2) H4 H5); intro H8; generalize (Rmult_lt_0_compat 2 (cos ((x + y) / 2)) Hyp H8); clear H8; intro H8; cut (- PI < - (PI / 2)). intro H9; generalize (sin_lt_0_var ((x - y) / 2) (Rlt_le_trans (- PI) (- (PI / 2)) ((x - y) / 2) H9 H7) H6); intro H10; generalize (Rmult_lt_gt_compat_neg_l (sin ((x - y) / 2)) 0 ( 2 * cos ((x + y) / 2)) H10 H8); intro H11; rewrite Rmult_0_r in H11; rewrite Rmult_comm; assumption. apply Ropp_lt_gt_contravar; apply PI2_Rlt_PI. Qed. Lemma sin_decreasing_0 : forall x y:R, x <= 3 * (PI / 2) -> PI / 2 <= x -> y <= 3 * (PI / 2) -> PI / 2 <= y -> sin x < sin y -> y < x. Proof. intros; rewrite <- (sin_PI_x x) in H3; rewrite <- (sin_PI_x y) in H3; generalize (Ropp_lt_gt_contravar (sin (PI - x)) (sin (PI - y)) H3); repeat rewrite <- sin_neg; generalize (Rplus_le_compat_l (- PI) x (3 * (PI / 2)) H); generalize (Rplus_le_compat_l (- PI) (PI / 2) x H0); generalize (Rplus_le_compat_l (- PI) y (3 * (PI / 2)) H1); generalize (Rplus_le_compat_l (- PI) (PI / 2) y H2); replace (- PI + x) with (x - PI) by apply Rplus_comm. replace (- PI + PI / 2) with (- (PI / 2)) by field. replace (- PI + y) with (y - PI) by apply Rplus_comm. replace (- PI + 3 * (PI / 2)) with (PI / 2) by field. replace (- (PI - x)) with (x - PI) by ring. replace (- (PI - y)) with (y - PI) by ring. intros; change (sin (y - PI) < sin (x - PI)) in H8; apply Rplus_lt_reg_l with (- PI); rewrite Rplus_comm. rewrite (Rplus_comm _ x). apply (sin_increasing_0 (y - PI) (x - PI) H4 H5 H6 H7 H8). Qed. Lemma sin_decreasing_1 : forall x y:R, x <= 3 * (PI / 2) -> PI / 2 <= x -> y <= 3 * (PI / 2) -> PI / 2 <= y -> x < y -> sin y < sin x. Proof. intros; rewrite <- (sin_PI_x x); rewrite <- (sin_PI_x y); generalize (Rplus_le_compat_l (- PI) x (3 * (PI / 2)) H); generalize (Rplus_le_compat_l (- PI) (PI / 2) x H0); generalize (Rplus_le_compat_l (- PI) y (3 * (PI / 2)) H1); generalize (Rplus_le_compat_l (- PI) (PI / 2) y H2); generalize (Rplus_lt_compat_l (- PI) x y H3); replace (- PI + PI / 2) with (- (PI / 2)) by field. replace (- PI + y) with (y - PI) by apply Rplus_comm. replace (- PI + 3 * (PI / 2)) with (PI / 2) by field. replace (- PI + x) with (x - PI) by apply Rplus_comm. intros; apply Ropp_lt_cancel; repeat rewrite <- sin_neg; replace (- (PI - x)) with (x - PI) by ring. replace (- (PI - y)) with (y - PI) by ring. apply (sin_increasing_1 (x - PI) (y - PI) H7 H8 H5 H6 H4). Qed. Lemma cos_increasing_0 : forall x y:R, PI <= x -> x <= 2 * PI -> PI <= y -> y <= 2 * PI -> cos x < cos y -> x < y. Proof. intros x y H1 H2 H3 H4; rewrite <- (cos_neg x); rewrite <- (cos_neg y); rewrite <- (cos_period (- x) 1); rewrite <- (cos_period (- y) 1); unfold INR in |- *; replace (- x + 2 * 1 * PI) with (PI / 2 - (x - 3 * (PI / 2))) by field. replace (- y + 2 * 1 * PI) with (PI / 2 - (y - 3 * (PI / 2))) by field. repeat rewrite cos_shift; intro H5; generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI x H1); generalize (Rplus_le_compat_l (-3 * (PI / 2)) x (2 * PI) H2); generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI y H3); generalize (Rplus_le_compat_l (-3 * (PI / 2)) y (2 * PI) H4). replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)) by ring. replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)) by ring. replace (-3 * (PI / 2) + 2 * PI) with (PI / 2) by field. replace (-3 * (PI / 2) + PI) with (- (PI / 2)) by field. clear H1 H2 H3 H4; intros H1 H2 H3 H4; apply Rplus_lt_reg_l with (-3 * (PI / 2)); replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)) by ring. replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)) by ring. apply (sin_increasing_0 (x - 3 * (PI / 2)) (y - 3 * (PI / 2)) H4 H3 H2 H1 H5). Qed. Lemma cos_increasing_1 : forall x y:R, PI <= x -> x <= 2 * PI -> PI <= y -> y <= 2 * PI -> x < y -> cos x < cos y. Proof. intros x y H1 H2 H3 H4 H5; generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI x H1); generalize (Rplus_le_compat_l (-3 * (PI / 2)) x (2 * PI) H2); generalize (Rplus_le_compat_l (-3 * (PI / 2)) PI y H3); generalize (Rplus_le_compat_l (-3 * (PI / 2)) y (2 * PI) H4); generalize (Rplus_lt_compat_l (-3 * (PI / 2)) x y H5); rewrite <- (cos_neg x); rewrite <- (cos_neg y); rewrite <- (cos_period (- x) 1); rewrite <- (cos_period (- y) 1); unfold INR in |- *; replace (-3 * (PI / 2) + x) with (x - 3 * (PI / 2)) by ring. replace (-3 * (PI / 2) + y) with (y - 3 * (PI / 2)) by ring. replace (-3 * (PI / 2) + PI) with (- (PI / 2)) by field. replace (-3 * (PI / 2) + 2 * PI) with (PI / 2) by field. clear H1 H2 H3 H4 H5; intros H1 H2 H3 H4 H5; replace (- x + 2 * 1 * PI) with (PI / 2 - (x - 3 * (PI / 2))) by field. replace (- y + 2 * 1 * PI) with (PI / 2 - (y - 3 * (PI / 2))) by field. repeat rewrite cos_shift; apply (sin_increasing_1 (x - 3 * (PI / 2)) (y - 3 * (PI / 2)) H5 H4 H3 H2 H1). Qed. Lemma cos_decreasing_0 : forall x y:R, 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> cos x < cos y -> y < x. Proof. intros; generalize (Ropp_lt_gt_contravar (cos x) (cos y) H3); repeat rewrite <- neg_cos; intro H4; change (cos (y + PI) < cos (x + PI)) in H4; rewrite (Rplus_comm x) in H4; rewrite (Rplus_comm y) in H4; generalize (Rplus_le_compat_l PI 0 x H); generalize (Rplus_le_compat_l PI x PI H0); generalize (Rplus_le_compat_l PI 0 y H1); generalize (Rplus_le_compat_l PI y PI H2); rewrite Rplus_0_r. rewrite <- double. clear H H0 H1 H2 H3; intros; apply Rplus_lt_reg_l with PI; apply (cos_increasing_0 (PI + y) (PI + x) H0 H H2 H1 H4). Qed. Lemma cos_decreasing_1 : forall x y:R, 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> x < y -> cos y < cos x. Proof. intros; apply Ropp_lt_cancel; repeat rewrite <- neg_cos; rewrite (Rplus_comm x); rewrite (Rplus_comm y); generalize (Rplus_le_compat_l PI 0 x H); generalize (Rplus_le_compat_l PI x PI H0); generalize (Rplus_le_compat_l PI 0 y H1); generalize (Rplus_le_compat_l PI y PI H2); rewrite Rplus_0_r. rewrite <- double. generalize (Rplus_lt_compat_l PI x y H3); clear H H0 H1 H2 H3; intros; apply (cos_increasing_1 (PI + x) (PI + y) H3 H2 H1 H0 H). Qed. Lemma tan_diff : forall x y:R, cos x <> 0 -> cos y <> 0 -> tan x - tan y = sin (x - y) / (cos x * cos y). Proof. intros; unfold tan in |- *; rewrite sin_minus. field. now split. Qed. Lemma tan_increasing_0 : forall x y:R, - (PI / 4) <= x -> x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> tan x < tan y -> x < y. Proof. intros; generalize PI4_RLT_PI2; intro H4; generalize (Ropp_lt_gt_contravar (PI / 4) (PI / 2) H4); intro H5; change (- (PI / 2) < - (PI / 4)) in H5; generalize (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H) (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)); intro HP1; generalize (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1) (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)); intro HP2; generalize (not_eq_sym (Rlt_not_eq 0 (cos x) (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H) (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)))); intro H6; generalize (not_eq_sym (Rlt_not_eq 0 (cos y) (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1) (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)))); intro H7; generalize (tan_diff x y H6 H7); intro H8; generalize (Rlt_minus (tan x) (tan y) H3); clear H3; intro H3; rewrite H8 in H3; cut (sin (x - y) < 0). intro H9; generalize (Ropp_le_ge_contravar (- (PI / 4)) y H1); rewrite Ropp_involutive; intro H10; generalize (Rge_le (PI / 4) (- y) H10); clear H10; intro H10; generalize (Ropp_le_ge_contravar y (PI / 4) H2); intro H11; generalize (Rge_le (- y) (- (PI / 4)) H11); clear H11; intro H11; generalize (Rplus_le_compat (- (PI / 4)) x (- (PI / 4)) (- y) H H11); generalize (Rplus_le_compat x (PI / 4) (- y) (PI / 4) H0 H10). replace (PI / 4 + PI / 4) with (PI / 2) by field. replace (- (PI / 4) + - (PI / 4)) with (- (PI / 2)) by field. intros; case (Rtotal_order 0 (x - y)); intro H14. generalize (sin_gt_0 (x - y) H14 (Rle_lt_trans (x - y) (PI / 2) PI H12 PI2_Rlt_PI)); intro H15; elim (Rlt_irrefl 0 (Rlt_trans 0 (sin (x - y)) 0 H15 H9)). elim H14; intro H15. rewrite <- H15 in H9; rewrite sin_0 in H9; elim (Rlt_irrefl 0 H9). apply Rminus_lt; assumption. case (Rcase_abs (sin (x - y))); intro H9. assumption. generalize (Rge_le (sin (x - y)) 0 H9); clear H9; intro H9; generalize (Rinv_0_lt_compat (cos x) HP1); intro H10; generalize (Rinv_0_lt_compat (cos y) HP2); intro H11; generalize (Rmult_lt_0_compat (/ cos x) (/ cos y) H10 H11); replace (/ cos x * / cos y) with (/ (cos x * cos y)). intro H12; generalize (Rmult_le_pos (sin (x - y)) (/ (cos x * cos y)) H9 (Rlt_le 0 (/ (cos x * cos y)) H12)); intro H13; elim (Rlt_irrefl 0 (Rle_lt_trans 0 (sin (x - y) * / (cos x * cos y)) 0 H13 H3)). apply Rinv_mult_distr. assumption. assumption. Qed. Lemma tan_increasing_1 : forall x y:R, - (PI / 4) <= x -> x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> x < y -> tan x < tan y. Proof. intros; apply Rminus_lt; generalize PI4_RLT_PI2; intro H4; generalize (Ropp_lt_gt_contravar (PI / 4) (PI / 2) H4); intro H5; change (- (PI / 2) < - (PI / 4)) in H5; generalize (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H) (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)); intro HP1; generalize (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1) (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)); intro HP2; generalize (not_eq_sym (Rlt_not_eq 0 (cos x) (cos_gt_0 x (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) x H5 H) (Rle_lt_trans x (PI / 4) (PI / 2) H0 H4)))); intro H6; generalize (not_eq_sym (Rlt_not_eq 0 (cos y) (cos_gt_0 y (Rlt_le_trans (- (PI / 2)) (- (PI / 4)) y H5 H1) (Rle_lt_trans y (PI / 4) (PI / 2) H2 H4)))); intro H7; rewrite (tan_diff x y H6 H7); generalize (Rinv_0_lt_compat (cos x) HP1); intro H10; generalize (Rinv_0_lt_compat (cos y) HP2); intro H11; generalize (Rmult_lt_0_compat (/ cos x) (/ cos y) H10 H11); replace (/ cos x * / cos y) with (/ (cos x * cos y)). clear H10 H11; intro H8; generalize (Ropp_le_ge_contravar y (PI / 4) H2); intro H11; generalize (Rge_le (- y) (- (PI / 4)) H11); clear H11; intro H11; generalize (Rplus_le_compat (- (PI / 4)) x (- (PI / 4)) (- y) H H11). replace (- (PI / 4) + - (PI / 4)) with (- (PI / 2)) by field. clear H11; intro H9; generalize (Rlt_minus x y H3); clear H3; intro H3; clear H H0 H1 H2 H4 H5 HP1 HP2; generalize PI2_Rlt_PI; intro H1; generalize (Ropp_lt_gt_contravar (PI / 2) PI H1); clear H1; intro H1; generalize (sin_lt_0_var (x - y) (Rlt_le_trans (- PI) (- (PI / 2)) (x - y) H1 H9) H3); intro H2; generalize (Rmult_lt_gt_compat_neg_l (sin (x - y)) 0 (/ (cos x * cos y)) H2 H8); rewrite Rmult_0_r; intro H4; assumption. apply Rinv_mult_distr; assumption. Qed. Lemma sin_incr_0 : forall x y:R, - (PI / 2) <= x -> x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> sin x <= sin y -> x <= y. Proof. intros; case (Rtotal_order (sin x) (sin y)); intro H4; [ left; apply (sin_increasing_0 x y H H0 H1 H2 H4) | elim H4; intro H5; [ case (Rtotal_order x y); intro H6; [ left; assumption | elim H6; intro H7; [ right; assumption | generalize (sin_increasing_1 y x H1 H2 H H0 H7); intro H8; rewrite H5 in H8; elim (Rlt_irrefl (sin y) H8) ] ] | elim (Rlt_irrefl (sin x) (Rle_lt_trans (sin x) (sin y) (sin x) H3 H5)) ] ]. Qed. Lemma sin_incr_1 : forall x y:R, - (PI / 2) <= x -> x <= PI / 2 -> - (PI / 2) <= y -> y <= PI / 2 -> x <= y -> sin x <= sin y. Proof. intros; case (Rtotal_order x y); intro H4; [ left; apply (sin_increasing_1 x y H H0 H1 H2 H4) | elim H4; intro H5; [ case (Rtotal_order (sin x) (sin y)); intro H6; [ left; assumption | elim H6; intro H7; [ right; assumption | generalize (sin_increasing_0 y x H1 H2 H H0 H7); intro H8; rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ] | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ]. Qed. Lemma sin_decr_0 : forall x y:R, x <= 3 * (PI / 2) -> PI / 2 <= x -> y <= 3 * (PI / 2) -> PI / 2 <= y -> sin x <= sin y -> y <= x. Proof. intros; case (Rtotal_order (sin x) (sin y)); intro H4; [ left; apply (sin_decreasing_0 x y H H0 H1 H2 H4) | elim H4; intro H5; [ case (Rtotal_order x y); intro H6; [ generalize (sin_decreasing_1 x y H H0 H1 H2 H6); intro H8; rewrite H5 in H8; elim (Rlt_irrefl (sin y) H8) | elim H6; intro H7; [ right; symmetry in |- *; assumption | left; assumption ] ] | elim (Rlt_irrefl (sin x) (Rle_lt_trans (sin x) (sin y) (sin x) H3 H5)) ] ]. Qed. Lemma sin_decr_1 : forall x y:R, x <= 3 * (PI / 2) -> PI / 2 <= x -> y <= 3 * (PI / 2) -> PI / 2 <= y -> x <= y -> sin y <= sin x. Proof. intros; case (Rtotal_order x y); intro H4; [ left; apply (sin_decreasing_1 x y H H0 H1 H2 H4) | elim H4; intro H5; [ case (Rtotal_order (sin x) (sin y)); intro H6; [ generalize (sin_decreasing_0 x y H H0 H1 H2 H6); intro H8; rewrite H5 in H8; elim (Rlt_irrefl y H8) | elim H6; intro H7; [ right; symmetry in |- *; assumption | left; assumption ] ] | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ]. Qed. Lemma cos_incr_0 : forall x y:R, PI <= x -> x <= 2 * PI -> PI <= y -> y <= 2 * PI -> cos x <= cos y -> x <= y. Proof. intros; case (Rtotal_order (cos x) (cos y)); intro H4; [ left; apply (cos_increasing_0 x y H H0 H1 H2 H4) | elim H4; intro H5; [ case (Rtotal_order x y); intro H6; [ left; assumption | elim H6; intro H7; [ right; assumption | generalize (cos_increasing_1 y x H1 H2 H H0 H7); intro H8; rewrite H5 in H8; elim (Rlt_irrefl (cos y) H8) ] ] | elim (Rlt_irrefl (cos x) (Rle_lt_trans (cos x) (cos y) (cos x) H3 H5)) ] ]. Qed. Lemma cos_incr_1 : forall x y:R, PI <= x -> x <= 2 * PI -> PI <= y -> y <= 2 * PI -> x <= y -> cos x <= cos y. Proof. intros; case (Rtotal_order x y); intro H4; [ left; apply (cos_increasing_1 x y H H0 H1 H2 H4) | elim H4; intro H5; [ case (Rtotal_order (cos x) (cos y)); intro H6; [ left; assumption | elim H6; intro H7; [ right; assumption | generalize (cos_increasing_0 y x H1 H2 H H0 H7); intro H8; rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ] | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ]. Qed. Lemma cos_decr_0 : forall x y:R, 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> cos x <= cos y -> y <= x. Proof. intros; case (Rtotal_order (cos x) (cos y)); intro H4; [ left; apply (cos_decreasing_0 x y H H0 H1 H2 H4) | elim H4; intro H5; [ case (Rtotal_order x y); intro H6; [ generalize (cos_decreasing_1 x y H H0 H1 H2 H6); intro H8; rewrite H5 in H8; elim (Rlt_irrefl (cos y) H8) | elim H6; intro H7; [ right; symmetry in |- *; assumption | left; assumption ] ] | elim (Rlt_irrefl (cos x) (Rle_lt_trans (cos x) (cos y) (cos x) H3 H5)) ] ]. Qed. Lemma cos_decr_1 : forall x y:R, 0 <= x -> x <= PI -> 0 <= y -> y <= PI -> x <= y -> cos y <= cos x. Proof. intros; case (Rtotal_order x y); intro H4; [ left; apply (cos_decreasing_1 x y H H0 H1 H2 H4) | elim H4; intro H5; [ case (Rtotal_order (cos x) (cos y)); intro H6; [ generalize (cos_decreasing_0 x y H H0 H1 H2 H6); intro H8; rewrite H5 in H8; elim (Rlt_irrefl y H8) | elim H6; intro H7; [ right; symmetry in |- *; assumption | left; assumption ] ] | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ]. Qed. Lemma tan_incr_0 : forall x y:R, - (PI / 4) <= x -> x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> tan x <= tan y -> x <= y. Proof. intros; case (Rtotal_order (tan x) (tan y)); intro H4; [ left; apply (tan_increasing_0 x y H H0 H1 H2 H4) | elim H4; intro H5; [ case (Rtotal_order x y); intro H6; [ left; assumption | elim H6; intro H7; [ right; assumption | generalize (tan_increasing_1 y x H1 H2 H H0 H7); intro H8; rewrite H5 in H8; elim (Rlt_irrefl (tan y) H8) ] ] | elim (Rlt_irrefl (tan x) (Rle_lt_trans (tan x) (tan y) (tan x) H3 H5)) ] ]. Qed. Lemma tan_incr_1 : forall x y:R, - (PI / 4) <= x -> x <= PI / 4 -> - (PI / 4) <= y -> y <= PI / 4 -> x <= y -> tan x <= tan y. Proof. intros; case (Rtotal_order x y); intro H4; [ left; apply (tan_increasing_1 x y H H0 H1 H2 H4) | elim H4; intro H5; [ case (Rtotal_order (tan x) (tan y)); intro H6; [ left; assumption | elim H6; intro H7; [ right; assumption | generalize (tan_increasing_0 y x H1 H2 H H0 H7); intro H8; rewrite H5 in H8; elim (Rlt_irrefl y H8) ] ] | elim (Rlt_irrefl x (Rle_lt_trans x y x H3 H5)) ] ]. Qed. (**********) Lemma sin_eq_0_1 : forall x:R, (exists k : Z, x = IZR k * PI) -> sin x = 0. Proof. intros. elim H; intros. apply (Zcase_sign x0). intro. rewrite H1 in H0. simpl in H0. rewrite H0; rewrite Rmult_0_l; apply sin_0. intro. cut (0 <= x0)%Z. intro. elim (IZN x0 H2); intros. rewrite H3 in H0. rewrite <- INR_IZR_INZ in H0. rewrite H0. elim (even_odd_cor x1); intros. elim H4; intro. rewrite H5. rewrite mult_INR. simpl in |- *. rewrite <- (Rplus_0_l ((1 + 1) * INR x2 * PI)). rewrite sin_period. apply sin_0. rewrite H5. rewrite S_INR; rewrite mult_INR. simpl in |- *. rewrite Rmult_plus_distr_r. rewrite Rmult_1_l; rewrite sin_plus. rewrite sin_PI. rewrite Rmult_0_r. rewrite <- (Rplus_0_l ((1 + 1) * INR x2 * PI)). rewrite sin_period. rewrite sin_0; ring. apply le_IZR. left; apply IZR_lt. assert (H2 := Z.gt_lt_iff). elim (H2 x0 0%Z); intros. apply H3; assumption. intro. rewrite H0. replace (sin (IZR x0 * PI)) with (- sin (- IZR x0 * PI)). cut (0 <= - x0)%Z. intro. rewrite <- Ropp_Ropp_IZR. elim (IZN (- x0) H2); intros. rewrite H3. rewrite <- INR_IZR_INZ. elim (even_odd_cor x1); intros. elim H4; intro. rewrite H5. rewrite mult_INR. simpl in |- *. rewrite <- (Rplus_0_l ((1 + 1) * INR x2 * PI)). rewrite sin_period. rewrite sin_0; ring. rewrite H5. rewrite S_INR; rewrite mult_INR. simpl in |- *. rewrite Rmult_plus_distr_r. rewrite Rmult_1_l; rewrite sin_plus. rewrite sin_PI. rewrite Rmult_0_r. rewrite <- (Rplus_0_l ((1 + 1) * INR x2 * PI)). rewrite sin_period. rewrite sin_0; ring. apply le_IZR. apply Rplus_le_reg_l with (IZR x0). rewrite Rplus_0_r. rewrite Ropp_Ropp_IZR. rewrite Rplus_opp_r. now apply Rlt_le, IZR_lt. rewrite <- sin_neg. rewrite Ropp_mult_distr_l_reverse. rewrite Ropp_involutive. reflexivity. Qed. Lemma sin_eq_0_0 (x:R) : sin x = 0 -> exists k : Z, x = IZR k * PI. Proof. intros Hx. destruct (euclidian_division x PI PI_neq0) as (q & r & EQ & Hr & Hr'). exists q. rewrite <- (Rplus_0_r (_*_)). subst. apply Rplus_eq_compat_l. rewrite sin_plus in Hx. assert (H : sin (IZR q * PI) = 0) by (apply sin_eq_0_1; now exists q). rewrite H, Rmult_0_l, Rplus_0_l in Hx. destruct (Rmult_integral _ _ Hx) as [H'|H']. - exfalso. generalize (sin2_cos2 (IZR q * PI)). rewrite H, H', Rsqr_0, Rplus_0_l. intros; now apply R1_neq_R0. - rewrite Rabs_right in Hr'; [|left; apply PI_RGT_0]. destruct Hr as [Hr | ->]; trivial. exfalso. generalize (sin_gt_0 r Hr Hr'). rewrite H'. apply Rlt_irrefl. Qed. Lemma cos_eq_0_0 (x:R) : cos x = 0 -> exists k : Z, x = IZR k * PI + PI / 2. Proof. rewrite cos_sin. intros Hx. destruct (sin_eq_0_0 (PI/2 + x) Hx) as (k,Hk). clear Hx. exists (k-1)%Z. rewrite <- Z_R_minus; simpl. symmetry in Hk. field_simplify [Hk]. field. Qed. Lemma cos_eq_0_1 (x:R) : (exists k : Z, x = IZR k * PI + PI / 2) -> cos x = 0. Proof. rewrite cos_sin. intros (k,->). replace (_ + _) with (IZR k * PI + PI) by field. rewrite neg_sin, <- Ropp_0. apply Ropp_eq_compat. apply sin_eq_0_1. now exists k. Qed. Lemma sin_eq_O_2PI_0 (x:R) : 0 <= x -> x <= 2 * PI -> sin x = 0 -> x = 0 \/ x = PI \/ x = 2 * PI. Proof. intros Lo Hi Hx. destruct (sin_eq_0_0 x Hx) as (k,Hk). clear Hx. destruct (Rtotal_order PI x) as [Hx|[Hx|Hx]]. - right; right. clear Lo. subst. f_equal. change 2 with (IZR (- (-2))). f_equal. apply Z.add_move_0_l. apply one_IZR_lt1. rewrite plus_IZR; simpl. split. + replace (-1) with (-2 + 1) by ring. apply Rplus_lt_compat_l. apply Rmult_lt_reg_r with PI; [apply PI_RGT_0|]. now rewrite Rmult_1_l. + apply Rle_lt_trans with 0; [|apply Rlt_0_1]. replace 0 with (-2 + 2) by ring. apply Rplus_le_compat_l. apply Rmult_le_reg_r with PI; [apply PI_RGT_0|]. trivial. - right; left; auto. - left. clear Hi. subst. replace 0 with (IZR 0 * PI) by apply Rmult_0_l. f_equal. f_equal. apply one_IZR_lt1. split. + apply Rlt_le_trans with 0; [rewrite <- Ropp_0; apply Ropp_gt_lt_contravar, Rlt_0_1 | ]. apply Rmult_le_reg_r with PI; [apply PI_RGT_0|]. now rewrite Rmult_0_l. + apply Rmult_lt_reg_r with PI; [apply PI_RGT_0|]. now rewrite Rmult_1_l. Qed. Lemma sin_eq_O_2PI_1 (x:R) : 0 <= x -> x <= 2 * PI -> x = 0 \/ x = PI \/ x = 2 * PI -> sin x = 0. Proof. intros _ _ [ -> |[ -> | -> ]]. - now rewrite sin_0. - now rewrite sin_PI. - now rewrite sin_2PI. Qed. Lemma cos_eq_0_2PI_0 (x:R) : 0 <= x -> x <= 2 * PI -> cos x = 0 -> x = PI / 2 \/ x = 3 * (PI / 2). Proof. intros Lo Hi Hx. destruct (Rtotal_order x (3 * (PI / 2))) as [LT|[EQ|GT]]. - rewrite cos_sin in Hx. assert (Lo' : 0 <= PI / 2 + x). { apply Rplus_le_le_0_compat. apply Rlt_le, PI2_RGT_0. trivial. } assert (Hi' : PI / 2 + x <= 2 * PI). { apply Rlt_le. replace (2 * PI) with (PI / 2 + 3 * (PI / 2)) by field. now apply Rplus_lt_compat_l. } destruct (sin_eq_O_2PI_0 (PI / 2 + x) Lo' Hi' Hx) as [H|[H|H]]. + exfalso. apply (Rplus_le_compat_l (PI/2)) in Lo. rewrite Rplus_0_r, H in Lo. apply (Rlt_irrefl 0 (Rlt_le_trans 0 (PI / 2) 0 PI2_RGT_0 Lo)). + left. apply (Rplus_eq_compat_l (-(PI/2))) in H. ring_simplify in H. rewrite H. field. + right. apply (Rplus_eq_compat_l (-(PI/2))) in H. ring_simplify in H. rewrite H. field. - now right. - exfalso. destruct (cos_eq_0_0 x Hx) as (k,Hk). clear Hx Lo. subst. assert (LT : (k < 2)%Z). { apply lt_IZR. simpl. apply (Rmult_lt_reg_r PI); [apply PI_RGT_0|]. apply Rlt_le_trans with (IZR k * PI + PI/2); trivial. rewrite <- (Rplus_0_r (IZR k * PI)) at 1. apply Rplus_lt_compat_l. apply PI2_RGT_0. } assert (GT' : (1 < k)%Z). { apply lt_IZR. simpl. apply (Rmult_lt_reg_r PI); [apply PI_RGT_0|rewrite Rmult_1_l]. replace (3*(PI/2)) with (PI/2 + PI) in GT by field. rewrite Rplus_comm in GT. now apply Rplus_lt_reg_l in GT. } omega. Qed. Lemma cos_eq_0_2PI_1 (x:R) : 0 <= x -> x <= 2 * PI -> x = PI / 2 \/ x = 3 * (PI / 2) -> cos x = 0. Proof. intros Lo Hi [ -> | -> ]. - now rewrite cos_PI2. - now rewrite cos_3PI2. Qed.