(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* bool) (N:nat) {struct N} : R := match N with | O => x | S n => let down := Dichotomy_lb x y P n in let up := Dichotomy_ub x y P n in let z := (down + up) / 2 in if P z then down else z end with Dichotomy_ub (x y:R) (P:R -> bool) (N:nat) {struct N} : R := match N with | O => y | S n => let down := Dichotomy_lb x y P n in let up := Dichotomy_ub x y P n in let z := (down + up) / 2 in if P z then z else up end. Definition dicho_lb (x y:R) (P:R -> bool) (N:nat) : R := Dichotomy_lb x y P N. Definition dicho_up (x y:R) (P:R -> bool) (N:nat) : R := Dichotomy_ub x y P N. (**********) Lemma dicho_comp : forall (x y:R) (P:R -> bool) (n:nat), x <= y -> dicho_lb x y P n <= dicho_up x y P n. Proof. intros. induction n as [| n Hrecn]. simpl; assumption. simpl. case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)). unfold Rdiv; apply Rmult_le_reg_l with 2. prove_sup0. pattern 2 at 1; rewrite Rmult_comm. rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ]. rewrite Rmult_1_r. rewrite double. apply Rplus_le_compat_l. assumption. unfold Rdiv; apply Rmult_le_reg_l with 2. prove_sup0. rewrite Rmult_comm. rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ]. rewrite Rmult_1_r. rewrite double. rewrite <- (Rplus_comm (Dichotomy_ub x y P n)). apply Rplus_le_compat_l. assumption. Qed. Lemma dicho_lb_growing : forall (x y:R) (P:R -> bool), x <= y -> Un_growing (dicho_lb x y P). Proof. intros. unfold Un_growing. intro. simpl. case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)). right; reflexivity. unfold Rdiv; apply Rmult_le_reg_l with 2. prove_sup0. pattern 2 at 1; rewrite Rmult_comm. rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ]. rewrite Rmult_1_r. rewrite double. apply Rplus_le_compat_l. replace (Dichotomy_ub x y P n) with (dicho_up x y P n); [ apply dicho_comp; assumption | reflexivity ]. Qed. Lemma dicho_up_decreasing : forall (x y:R) (P:R -> bool), x <= y -> Un_decreasing (dicho_up x y P). Proof. intros. unfold Un_decreasing. intro. simpl. case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)). unfold Rdiv; apply Rmult_le_reg_l with 2. prove_sup0. rewrite Rmult_comm. rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ]. rewrite Rmult_1_r. rewrite double. replace (Dichotomy_ub x y P n) with (dicho_up x y P n); [ idtac | reflexivity ]. replace (Dichotomy_lb x y P n) with (dicho_lb x y P n); [ idtac | reflexivity ]. rewrite <- (Rplus_comm (dicho_up x y P n)). apply Rplus_le_compat_l. apply dicho_comp; assumption. right; reflexivity. Qed. Lemma dicho_lb_maj_y : forall (x y:R) (P:R -> bool), x <= y -> forall n:nat, dicho_lb x y P n <= y. Proof. intros. induction n as [| n Hrecn]. simpl; assumption. simpl. case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)). assumption. unfold Rdiv; apply Rmult_le_reg_l with 2. prove_sup0. rewrite Rmult_comm. rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ rewrite Rmult_1_r | discrR ]. rewrite double; apply Rplus_le_compat. assumption. pattern y at 2; replace y with (Dichotomy_ub x y P 0); [ idtac | reflexivity ]. apply decreasing_prop. assert (H0 := dicho_up_decreasing x y P H). assumption. apply le_O_n. Qed. Lemma dicho_lb_maj : forall (x y:R) (P:R -> bool), x <= y -> has_ub (dicho_lb x y P). Proof. intros. cut (forall n:nat, dicho_lb x y P n <= y). intro. unfold has_ub. unfold bound. exists y. unfold is_upper_bound. intros. elim H1; intros. rewrite H2; apply H0. apply dicho_lb_maj_y; assumption. Qed. Lemma dicho_up_min_x : forall (x y:R) (P:R -> bool), x <= y -> forall n:nat, x <= dicho_up x y P n. Proof. intros. induction n as [| n Hrecn]. simpl; assumption. simpl. case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)). unfold Rdiv; apply Rmult_le_reg_l with 2. prove_sup0. pattern 2 at 1; rewrite Rmult_comm. rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ rewrite Rmult_1_r | discrR ]. rewrite double; apply Rplus_le_compat. pattern x at 1; replace x with (Dichotomy_lb x y P 0); [ idtac | reflexivity ]. apply tech9. assert (H0 := dicho_lb_growing x y P H). assumption. apply le_O_n. assumption. assumption. Qed. Lemma dicho_up_min : forall (x y:R) (P:R -> bool), x <= y -> has_lb (dicho_up x y P). Proof. intros. cut (forall n:nat, x <= dicho_up x y P n). intro. unfold has_lb. unfold bound. exists (- x). unfold is_upper_bound. intros. elim H1; intros. rewrite H2. unfold opp_seq. apply Ropp_le_contravar. apply H0. apply dicho_up_min_x; assumption. Qed. Lemma dicho_lb_cv : forall (x y:R) (P:R -> bool), x <= y -> { l:R | Un_cv (dicho_lb x y P) l }. Proof. intros. apply growing_cv. apply dicho_lb_growing; assumption. apply dicho_lb_maj; assumption. Qed. Lemma dicho_up_cv : forall (x y:R) (P:R -> bool), x <= y -> { l:R | Un_cv (dicho_up x y P) l }. Proof. intros. apply decreasing_cv. apply dicho_up_decreasing; assumption. apply dicho_up_min; assumption. Qed. Lemma dicho_lb_dicho_up : forall (x y:R) (P:R -> bool) (n:nat), x <= y -> dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n. Proof. intros. induction n as [| n Hrecn]. simpl. unfold Rdiv; rewrite Rinv_1; ring. simpl. case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)). unfold Rdiv. replace ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2 - Dichotomy_lb x y P n) with ((dicho_up x y P n - dicho_lb x y P n) / 2). unfold Rdiv; rewrite Hrecn. unfold Rdiv. rewrite Rinv_mult_distr. ring. discrR. apply pow_nonzero; discrR. pattern (Dichotomy_lb x y P n) at 2; rewrite (double_var (Dichotomy_lb x y P n)); unfold dicho_up, dicho_lb, Rminus, Rdiv; ring. replace (Dichotomy_ub x y P n - (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) with ((dicho_up x y P n - dicho_lb x y P n) / 2). unfold Rdiv; rewrite Hrecn. unfold Rdiv. rewrite Rinv_mult_distr. ring. discrR. apply pow_nonzero; discrR. pattern (Dichotomy_ub x y P n) at 1; rewrite (double_var (Dichotomy_ub x y P n)); unfold dicho_up, dicho_lb, Rminus, Rdiv; ring. Qed. Definition pow_2_n (n:nat) := 2 ^ n. Lemma pow_2_n_neq_R0 : forall n:nat, pow_2_n n <> 0. Proof. intro. unfold pow_2_n. apply pow_nonzero. discrR. Qed. Lemma pow_2_n_growing : Un_growing pow_2_n. Proof. unfold Un_growing. intro. replace (S n) with (n + 1)%nat; [ unfold pow_2_n; rewrite pow_add | ring ]. pattern (2 ^ n) at 1; rewrite <- Rmult_1_r. apply Rmult_le_compat_l. left; apply pow_lt; prove_sup0. simpl. rewrite Rmult_1_r. pattern 1 at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left; apply Rlt_0_1. Qed. Lemma pow_2_n_infty : cv_infty pow_2_n. Proof. cut (forall N:nat, INR N <= 2 ^ N). intros. unfold cv_infty. intro. destruct (total_order_T 0 M) as [[Hlt|<-]|Hgt]. set (N := up M). cut (0 <= N)%Z. intro. elim (IZN N H0); intros N0 H1. exists N0. intros. apply Rlt_le_trans with (INR N0). rewrite INR_IZR_INZ. rewrite <- H1. unfold N. assert (H3 := archimed M). elim H3; intros; assumption. apply Rle_trans with (pow_2_n N0). unfold pow_2_n; apply H. apply Rge_le. apply growing_prop. apply pow_2_n_growing. assumption. apply le_IZR. unfold N. simpl. assert (H0 := archimed M); elim H0; intros. left; apply Rlt_trans with M; assumption. exists 0%nat; intros. unfold pow_2_n; apply pow_lt; prove_sup0. exists 0%nat; intros. apply Rlt_trans with 0. assumption. unfold pow_2_n; apply pow_lt; prove_sup0. simple induction N. simpl. left; apply Rlt_0_1. intros. pattern (S n) at 2; replace (S n) with (n + 1)%nat; [ idtac | ring ]. rewrite S_INR; rewrite pow_add. simpl. rewrite Rmult_1_r. apply Rle_trans with (2 ^ n). rewrite <- (Rplus_comm 1). rewrite <- (Rmult_1_r (INR n)). apply (poly n 1). apply Rlt_0_1. pattern (2 ^ n) at 1; rewrite <- Rplus_0_r. rewrite <- (Rmult_comm 2). rewrite double. apply Rplus_le_compat_l. left; apply pow_lt; prove_sup0. Qed. Lemma cv_dicho : forall (x y l1 l2:R) (P:R -> bool), x <= y -> Un_cv (dicho_lb x y P) l1 -> Un_cv (dicho_up x y P) l2 -> l1 = l2. Proof. intros. assert (H2 := CV_minus _ _ _ _ H0 H1). cut (Un_cv (fun i:nat => dicho_lb x y P i - dicho_up x y P i) 0). intro. assert (H4 := UL_sequence _ _ _ H2 H3). symmetry ; apply Rminus_diag_uniq_sym; assumption. unfold Un_cv; unfold R_dist. intros. assert (H4 := cv_infty_cv_R0 pow_2_n pow_2_n_neq_R0 pow_2_n_infty). destruct (total_order_T x y) as [[ Hlt | -> ]|Hgt]. unfold Un_cv in H4; unfold R_dist in H4. cut (0 < y - x). intro Hyp. cut (0 < eps / (y - x)). intro. elim (H4 (eps / (y - x)) H5); intros N H6. exists N; intros. replace (dicho_lb x y P n - dicho_up x y P n - 0) with (dicho_lb x y P n - dicho_up x y P n); [ idtac | ring ]. rewrite <- Rabs_Ropp. rewrite Ropp_minus_distr'. rewrite dicho_lb_dicho_up. unfold Rdiv; rewrite Rabs_mult. rewrite (Rabs_right (y - x)). apply Rmult_lt_reg_l with (/ (y - x)). apply Rinv_0_lt_compat; assumption. rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_l. replace (/ 2 ^ n) with (/ 2 ^ n - 0); [ unfold pow_2_n, Rdiv in H6; rewrite <- (Rmult_comm eps); apply H6; assumption | ring ]. red; intro; rewrite H8 in Hyp; elim (Rlt_irrefl _ Hyp). apply Rle_ge. apply Rplus_le_reg_l with x; rewrite Rplus_0_r. replace (x + (y - x)) with y; [ assumption | ring ]. assumption. unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; assumption ]. apply Rplus_lt_reg_l with x; rewrite Rplus_0_r. replace (x + (y - x)) with y; [ assumption | ring ]. exists 0%nat; intros. replace (dicho_lb y y P n - dicho_up y y P n - 0) with (dicho_lb y y P n - dicho_up y y P n); [ idtac | ring ]. rewrite <- Rabs_Ropp. rewrite Ropp_minus_distr'. rewrite dicho_lb_dicho_up. unfold Rminus, Rdiv; rewrite Rplus_opp_r; rewrite Rmult_0_l; rewrite Rabs_R0; assumption. assumption. elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H Hgt)). Qed. Definition cond_positivity (x:R) : bool := match Rle_dec 0 x with | left _ => true | right _ => false end. (** Sequential caracterisation of continuity *) Lemma continuity_seq : forall (f:R -> R) (Un:nat -> R) (l:R), continuity_pt f l -> Un_cv Un l -> Un_cv (fun i:nat => f (Un i)) (f l). Proof. unfold continuity_pt, Un_cv; unfold continue_in. unfold limit1_in. unfold limit_in. unfold dist. simpl. unfold R_dist. intros. elim (H eps H1); intros alp H2. elim H2; intros. elim (H0 alp H3); intros N H5. exists N; intros. case (Req_dec (Un n) l); intro. rewrite H7; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. apply H4. split. unfold D_x, no_cond. split. trivial. apply (not_eq_sym (A:=R)); assumption. apply H5; assumption. Qed. Lemma dicho_lb_car : forall (x y:R) (P:R -> bool) (n:nat), P x = false -> P (dicho_lb x y P n) = false. Proof. intros. induction n as [| n Hrecn]. - assumption. - simpl. destruct (sumbool_of_bool (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2))) as [Heq|Heq]. + rewrite Heq. unfold dicho_lb in Hrecn; assumption. + rewrite Heq. assumption. Qed. Lemma dicho_up_car : forall (x y:R) (P:R -> bool) (n:nat), P y = true -> P (dicho_up x y P n) = true. Proof. intros. induction n as [| n Hrecn]. - assumption. - simpl. destruct (sumbool_of_bool (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2))) as [Heq|Heq]. + rewrite Heq. unfold dicho_lb in Hrecn; assumption. + rewrite Heq. assumption. Qed. (* A general purpose corollary. *) Lemma cv_pow_half : forall a, Un_cv (fun n => a/2^n) 0. intros a; unfold Rdiv; replace 0 with (a * 0) by ring. apply CV_mult. intros eps ep; exists 0%nat; rewrite R_dist_eq; intros n _; assumption. exact (cv_infty_cv_R0 pow_2_n pow_2_n_neq_R0 pow_2_n_infty). Qed. (** Intermediate Value Theorem *) Lemma IVT : forall (f:R -> R) (x y:R), continuity f -> x < y -> f x < 0 -> 0 < f y -> { z:R | x <= z <= y /\ f z = 0 }. Proof. intros. assert (x <= y) by (left; assumption). destruct (dicho_lb_cv x y (fun z:R => cond_positivity (f z)) H3) as (x1,p0). destruct (dicho_up_cv x y (fun z:R => cond_positivity (f z)) H3) as (x0,p). assert (H4 := cv_dicho _ _ _ _ _ H3 p0 p). rewrite H4 in p0. exists x0. split. split. apply Rle_trans with (dicho_lb x y (fun z:R => cond_positivity (f z)) 0). simpl. right; reflexivity. apply growing_ineq. apply dicho_lb_growing; assumption. assumption. apply Rle_trans with (dicho_up x y (fun z:R => cond_positivity (f z)) 0). apply decreasing_ineq. apply dicho_up_decreasing; assumption. assumption. right; reflexivity. set (Vn := fun n:nat => dicho_lb x y (fun z:R => cond_positivity (f z)) n). set (Wn := fun n:nat => dicho_up x y (fun z:R => cond_positivity (f z)) n). cut ((forall n:nat, f (Vn n) <= 0) -> f x0 <= 0). cut ((forall n:nat, 0 <= f (Wn n)) -> 0 <= f x0). intros. cut (forall n:nat, f (Vn n) <= 0). cut (forall n:nat, 0 <= f (Wn n)). intros. assert (H9 := H6 H8). assert (H10 := H5 H7). apply Rle_antisym; assumption. intro. unfold Wn. cut (forall z:R, cond_positivity z = true <-> 0 <= z). intro. assert (H8 := dicho_up_car x y (fun z:R => cond_positivity (f z)) n). elim (H7 (f (dicho_up x y (fun z:R => cond_positivity (f z)) n))); intros. apply H9. apply H8. elim (H7 (f y)); intros. apply H12. left; assumption. intro. unfold cond_positivity. case (Rle_dec 0 z) as [Hle|Hnle]. split. intro; assumption. intro; reflexivity. split. intro feqt;discriminate feqt. intro. contradiction. unfold Vn. cut (forall z:R, cond_positivity z = false <-> z < 0). intros. assert (H8 := dicho_lb_car x y (fun z:R => cond_positivity (f z)) n). left. elim (H7 (f (dicho_lb x y (fun z:R => cond_positivity (f z)) n))); intros. apply H9. apply H8. elim (H7 (f x)); intros. apply H12. assumption. intro. unfold cond_positivity. case (Rle_dec 0 z) as [Hle|Hnle]. split. intro feqt; discriminate feqt. intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle H7)). split. intro; auto with real. intro; reflexivity. cut (Un_cv Wn x0). intros. assert (H7 := continuity_seq f Wn x0 (H x0) H5). destruct (total_order_T 0 (f x0)) as [[Hlt|<-]|Hgt]. left; assumption. right; reflexivity. unfold Un_cv in H7; unfold R_dist in H7. cut (0 < - f x0). intro. elim (H7 (- f x0) H8); intros. cut (x2 >= x2)%nat; [ intro | unfold ge; apply le_n ]. assert (H11 := H9 x2 H10). rewrite Rabs_right in H11. pattern (- f x0) at 1 in H11; rewrite <- Rplus_0_r in H11. unfold Rminus in H11; rewrite (Rplus_comm (f (Wn x2))) in H11. assert (H12 := Rplus_lt_reg_l _ _ _ H11). assert (H13 := H6 x2). elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H13 H12)). apply Rle_ge; left; unfold Rminus; apply Rplus_le_lt_0_compat. apply H6. exact H8. apply Ropp_0_gt_lt_contravar; assumption. unfold Wn; assumption. cut (Un_cv Vn x0). intros. assert (H7 := continuity_seq f Vn x0 (H x0) H5). destruct (total_order_T 0 (f x0)) as [[Hlt|<-]|Hgt]. unfold Un_cv in H7; unfold R_dist in H7. elim (H7 (f x0) Hlt); intros. cut (x2 >= x2)%nat; [ intro | unfold ge; apply le_n ]. assert (H10 := H8 x2 H9). rewrite Rabs_left in H10. pattern (f x0) at 2 in H10; rewrite <- Rplus_0_r in H10. rewrite Ropp_minus_distr' in H10. unfold Rminus in H10. assert (H11 := Rplus_lt_reg_l _ _ _ H10). assert (H12 := H6 x2). cut (0 < f (Vn x2)). intro. elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H13 H12)). rewrite <- (Ropp_involutive (f (Vn x2))). apply Ropp_0_gt_lt_contravar; assumption. apply Rplus_lt_reg_l with (f x0 - f (Vn x2)). rewrite Rplus_0_r; replace (f x0 - f (Vn x2) + (f (Vn x2) - f x0)) with 0; [ unfold Rminus; apply Rplus_lt_le_0_compat | ring ]. assumption. apply Ropp_0_ge_le_contravar; apply Rle_ge; apply H6. right; reflexivity. left; assumption. unfold Vn; assumption. Qed. Lemma IVT_cor : forall (f:R -> R) (x y:R), continuity f -> x <= y -> f x * f y <= 0 -> { z:R | x <= z <= y /\ f z = 0 }. Proof. intros. destruct (total_order_T 0 (f x)) as [[Hltx|Heqx]|Hgtx]. destruct (total_order_T 0 (f y)) as [[Hlty|Heqy]|Hgty]. cut (0 < f x * f y); [ intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H1 H2)) | apply Rmult_lt_0_compat; assumption ]. exists y. split. split; [ assumption | right; reflexivity ]. symmetry ; exact Heqy. cut (x < y). intro. assert (H3 := IVT (- f)%F x y (continuity_opp f H) H2). cut ((- f)%F x < 0). cut (0 < (- f)%F y). intros. destruct (H3 H5 H4) as (x0,[]). exists x0. split. assumption. unfold opp_fct in H7. rewrite <- (Ropp_involutive (f x0)). apply Ropp_eq_0_compat; assumption. unfold opp_fct; apply Ropp_0_gt_lt_contravar; assumption. unfold opp_fct. apply Rplus_lt_reg_l with (f x); rewrite Rplus_opp_r; rewrite Rplus_0_r; assumption. inversion H0. assumption. rewrite H2 in Hltx. elim (Rlt_irrefl _ (Rlt_trans _ _ _ Hgty Hltx)). exists x. split. split; [ right; reflexivity | assumption ]. symmetry ; assumption. destruct (total_order_T 0 (f y)) as [[Hlty|Heqy]|Hgty]. cut (x < y). intro. apply IVT; assumption. inversion H0. assumption. rewrite H2 in Hgtx. elim (Rlt_irrefl _ (Rlt_trans _ _ _ Hlty Hgtx)). exists y. split. split; [ assumption | right; reflexivity ]. symmetry ; assumption. cut (0 < f x * f y). intro. elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H2 H1)). rewrite <- Rmult_opp_opp; apply Rmult_lt_0_compat; apply Ropp_0_gt_lt_contravar; assumption. Qed. (** We can now define the square root function as the reciprocal transformation of the square function *) Lemma Rsqrt_exists : forall y:R, 0 <= y -> { z:R | 0 <= z /\ y = Rsqr z }. Proof. intros. set (f := fun x:R => Rsqr x - y). cut (f 0 <= 0). intro. cut (continuity f). intro. destruct (total_order_T y 1) as [[Hlt| -> ]|Hgt]. cut (0 <= f 1). intro. cut (f 0 * f 1 <= 0). intro. assert (X := IVT_cor f 0 1 H1 (Rlt_le _ _ Rlt_0_1) H3). elim X; intros t H4. exists t. elim H4; intros. split. elim H5; intros; assumption. unfold f in H6. apply Rminus_diag_uniq_sym; exact H6. rewrite Rmult_comm; pattern 0 at 2; rewrite <- (Rmult_0_r (f 1)). apply Rmult_le_compat_l; assumption. unfold f. rewrite Rsqr_1. apply Rplus_le_reg_l with y. rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus; rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r; left; assumption. exists 1. split. left; apply Rlt_0_1. symmetry; apply Rsqr_1. cut (0 <= f y). intro. cut (f 0 * f y <= 0). intro. assert (X := IVT_cor f 0 y H1 H H3). elim X; intros t H4. exists t. elim H4; intros. split. elim H5; intros; assumption. unfold f in H6. apply Rminus_diag_uniq_sym; exact H6. rewrite Rmult_comm; pattern 0 at 2; rewrite <- (Rmult_0_r (f y)). apply Rmult_le_compat_l; assumption. unfold f. apply Rplus_le_reg_l with y. rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus; rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r. pattern y at 1; rewrite <- Rmult_1_r. unfold Rsqr; apply Rmult_le_compat_l. assumption. left; exact Hgt. replace f with (Rsqr - fct_cte y)%F. apply continuity_minus. apply derivable_continuous; apply derivable_Rsqr. apply derivable_continuous; apply derivable_const. reflexivity. unfold f; rewrite Rsqr_0. unfold Rminus; rewrite Rplus_0_l. apply Rge_le. apply Ropp_0_le_ge_contravar; assumption. Qed. (* Definition of the square root: R+->R *) Definition Rsqrt (y:nonnegreal) : R := let (a,_) := Rsqrt_exists (nonneg y) (cond_nonneg y) in a. (**********) Lemma Rsqrt_positivity : forall x:nonnegreal, 0 <= Rsqrt x. Proof. intro. destruct (Rsqrt_exists (nonneg x) (cond_nonneg x)) as (x0 & H1 & H2). cut (x0 = Rsqrt x). intros. rewrite <- H; assumption. unfold Rsqrt. case (Rsqrt_exists x (cond_nonneg x)) as (?,[]). apply Rsqr_inj. assumption. assumption. rewrite <- H0, <- H2; reflexivity. Qed. (**********) Lemma Rsqrt_Rsqrt : forall x:nonnegreal, Rsqrt x * Rsqrt x = x. Proof. intros. destruct (Rsqrt_exists (nonneg x) (cond_nonneg x)) as (x0 & H1 & H2). cut (x0 = Rsqrt x). intros. rewrite <- H. rewrite H2; reflexivity. unfold Rsqrt. case (Rsqrt_exists x (cond_nonneg x)) as (x1 & ? & ?). apply Rsqr_inj. assumption. assumption. rewrite <- H0, <- H2; reflexivity. Qed.