(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* R. (*********) Fixpoint Rmax_N (N:nat) : R := match N with | O => Un 0 | S n => Rmax (Un (S n)) (Rmax_N n) end. (*********) Definition EUn r : Prop := exists i : nat, r = Un i. (*********) Definition Un_cv (l:R) : Prop := forall eps:R, eps > 0 -> exists N : nat, (forall n:nat, (n >= N)%nat -> R_dist (Un n) l < eps). (*********) Definition Cauchy_crit : Prop := forall eps:R, eps > 0 -> exists N : nat, (forall n m:nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (Un n) (Un m) < eps). (*********) Definition Un_growing : Prop := forall n:nat, Un n <= Un (S n). (*********) Lemma EUn_noempty : exists r : R, EUn r. Proof. unfold EUn; split with (Un 0); split with 0%nat; trivial. Qed. (*********) Lemma Un_in_EUn : forall n:nat, EUn (Un n). Proof. intro; unfold EUn; split with n; trivial. Qed. (*********) Lemma Un_bound_imp : forall x:R, (forall n:nat, Un n <= x) -> is_upper_bound EUn x. Proof. intros; unfold is_upper_bound; intros; unfold EUn in H0; elim H0; clear H0; intros; generalize (H x1); intro; rewrite <- H0 in H1; trivial. Qed. (*********) Lemma growing_prop : forall n m:nat, Un_growing -> (n >= m)%nat -> Un n >= Un m. Proof. double induction n m; intros. unfold Rge; right; trivial. exfalso; unfold ge in H1; generalize (le_Sn_O n0); intro; auto. cut (n0 >= 0)%nat. generalize H0; intros; unfold Un_growing in H0; apply (Rge_trans (Un (S n0)) (Un n0) (Un 0) (Rle_ge (Un n0) (Un (S n0)) (H0 n0)) (H 0%nat H2 H3)). elim n0; auto. elim (lt_eq_lt_dec n1 n0); intro y. elim y; clear y; intro y. unfold ge in H2; generalize (le_not_lt n0 n1 (le_S_n n0 n1 H2)); intro; exfalso; auto. rewrite y; unfold Rge; right; trivial. unfold ge in H0; generalize (H0 (S n0) H1 (lt_le_S n0 n1 y)); intro; unfold Un_growing in H1; apply (Rge_trans (Un (S n1)) (Un n1) (Un (S n0)) (Rle_ge (Un n1) (Un (S n1)) (H1 n1)) H3). Qed. (*********) Lemma Un_cv_crit_lub : Un_growing -> forall l, is_lub EUn l -> Un_cv l. Proof. intros Hug l H eps Heps. cut (exists N, Un N > l - eps). intros (N, H3). exists N. intros n H4. unfold R_dist. rewrite Rabs_left1, Ropp_minus_distr. apply Rplus_lt_reg_l with (Un n - eps). apply Rlt_le_trans with (Un N). now replace (Un n - eps + (l - Un n)) with (l - eps) by ring. replace (Un n - eps + eps) with (Un n) by ring. apply Rge_le. now apply growing_prop. apply Rle_minus. apply (proj1 H). now exists n. assert (Hi2pn: forall n, 0 < (/ 2)^n). clear. intros n. apply pow_lt. apply Rinv_0_lt_compat. now apply (IZR_lt 0 2). pose (test := fun n => match Rle_lt_dec (Un n) (l - eps) with left _ => false | right _ => true end). pose (sum := let fix aux n := match n with S n' => aux n' + if test n' then (/ 2)^n else 0 | O => 0 end in aux). assert (Hsum': forall m n, sum m <= sum (m + n)%nat <= sum m + (/2)^m - (/2)^(m + n)). clearbody test. clear -Hi2pn. intros m. induction n. rewrite<- plus_n_O. ring_simplify (sum m + (/ 2) ^ m - (/ 2) ^ m). split ; apply Rle_refl. rewrite <- plus_n_Sm. simpl. split. apply Rle_trans with (sum (m + n)%nat + 0). rewrite Rplus_0_r. apply IHn. apply Rplus_le_compat_l. case (test (m + n)%nat). apply Rlt_le. exact (Hi2pn (S (m + n))). apply Rle_refl. apply Rle_trans with (sum (m + n)%nat + / 2 * (/ 2) ^ (m + n)). apply Rplus_le_compat_l. case (test (m + n)%nat). apply Rle_refl. apply Rlt_le. exact (Hi2pn (S (m + n))). apply Rplus_le_reg_r with (-(/ 2 * (/ 2) ^ (m + n))). rewrite Rplus_assoc, Rplus_opp_r, Rplus_0_r. apply Rle_trans with (1 := proj2 IHn). apply Req_le. field. assert (Hsum: forall n, 0 <= sum n <= 1 - (/2)^n). intros N. generalize (Hsum' O N). simpl. now rewrite Rplus_0_l. destruct (completeness (fun x : R => exists n : nat, x = sum n)) as (m, (Hm1, Hm2)). exists 1. intros x (n, H1). rewrite H1. apply Rle_trans with (1 := proj2 (Hsum n)). apply Rlt_le. apply Rplus_lt_reg_l with ((/2)^n - 1). now ring_simplify. exists 0. now exists O. destruct (Rle_or_lt m 0) as [[Hm|Hm]|Hm]. elim Rlt_not_le with (1 := Hm). apply Hm1. now exists O. assert (Hs0: forall n, sum n = 0). intros n. specialize (Hm1 (sum n) (ex_intro _ _ (eq_refl _))). apply Rle_antisym with (2 := proj1 (Hsum n)). now rewrite <- Hm. assert (Hub: forall n, Un n <= l - eps). intros n. generalize (eq_refl (sum (S n))). simpl sum at 1. rewrite 2!Hs0, Rplus_0_l. unfold test. destruct Rle_lt_dec. easy. intros H'. elim Rgt_not_eq with (2 := H'). exact (Hi2pn (S n)). clear -Heps H Hub. destruct H as (_, H). refine (False_ind _ (Rle_not_lt _ _ (H (l - eps) _) _)). intros x (n, H1). now rewrite H1. apply Rplus_lt_reg_l with (eps - l). now ring_simplify. assert (Rabs (/2) < 1). rewrite Rabs_pos_eq. rewrite <- Rinv_1 at 3. apply Rinv_lt_contravar. rewrite Rmult_1_l. now apply (IZR_lt 0 2). now apply (IZR_lt 1 2). apply Rlt_le. apply Rinv_0_lt_compat. now apply (IZR_lt 0 2). destruct (pow_lt_1_zero (/2) H0 m Hm) as [N H4]. exists N. apply Rnot_le_lt. intros H5. apply Rlt_not_le with (1 := H4 _ (le_refl _)). rewrite Rabs_pos_eq. 2: now apply Rlt_le. apply Hm2. intros x (n, H6). rewrite H6. clear x H6. assert (Hs: sum N = 0). clear H4. induction N. easy. simpl. assert (H6: Un N <= l - eps). apply Rle_trans with (2 := H5). apply Rge_le. apply growing_prop ; try easy. apply le_n_Sn. rewrite (IHN H6), Rplus_0_l. unfold test. destruct Rle_lt_dec as [Hle|Hlt]. apply eq_refl. now elim Rlt_not_le with (1 := Hlt). destruct (le_or_lt N n) as [Hn|Hn]. rewrite le_plus_minus with (1 := Hn). apply Rle_trans with (1 := proj2 (Hsum' N (n - N)%nat)). rewrite Hs, Rplus_0_l. set (k := (N + (n - N))%nat). apply Rlt_le. apply Rplus_lt_reg_l with ((/2)^k - (/2)^N). now ring_simplify. apply Rle_trans with (sum N). rewrite le_plus_minus with (1 := Hn). rewrite plus_Snm_nSm. exact (proj1 (Hsum' _ _)). rewrite Hs. now apply Rlt_le. Qed. (*********) Lemma Un_cv_crit : Un_growing -> bound EUn -> exists l : R, Un_cv l. Proof. intros Hug Heub. exists (proj1_sig (completeness EUn Heub EUn_noempty)). destruct (completeness EUn Heub EUn_noempty) as (l, H). now apply Un_cv_crit_lub. Qed. (*********) Lemma finite_greater : forall N:nat, exists M : R, (forall n:nat, (n <= N)%nat -> Un n <= M). Proof. intro; induction N as [| N HrecN]. split with (Un 0); intros; rewrite (le_n_O_eq n H); apply (Req_le (Un n) (Un n) (eq_refl (Un n))). elim HrecN; clear HrecN; intros; split with (Rmax (Un (S N)) x); intros; elim (Rmax_Rle (Un (S N)) x (Un n)); intros; clear H1; inversion H0. rewrite <- H1; rewrite <- H1 in H2; apply (H2 (or_introl (Un n <= x) (Req_le (Un n) (Un n) (eq_refl (Un n))))). apply (H2 (or_intror (Un n <= Un (S N)) (H n H3))). Qed. (*********) Lemma cauchy_bound : Cauchy_crit -> bound EUn. Proof. unfold Cauchy_crit, bound; intros; unfold is_upper_bound; unfold Rgt in H; elim (H 1 Rlt_0_1); clear H; intros; generalize (H x); intro; generalize (le_dec x); intro; elim (finite_greater x); intros; split with (Rmax x0 (Un x + 1)); clear H; intros; unfold EUn in H; elim H; clear H; intros; elim (H1 x2); clear H1; intro y. unfold ge in H0; generalize (H0 x2 (le_n x) y); clear H0; intro; rewrite <- H in H0; unfold R_dist in H0; elim (Rabs_def2 (Un x - x1) 1 H0); clear H0; intros; elim (Rmax_Rle x0 (Un x + 1) x1); intros; apply H4; clear H3 H4; right; clear H H0 y; apply (Rlt_le x1 (Un x + 1)); generalize (Rlt_minus (-1) (Un x - x1) H1); clear H1; intro; apply (Rminus_lt x1 (Un x + 1)); cut (-1 - (Un x - x1) = x1 - (Un x + 1)); [ intro; rewrite H0 in H; assumption | ring ]. generalize (H2 x2 y); clear H2 H0; intro; rewrite <- H in H0; elim (Rmax_Rle x0 (Un x + 1) x1); intros; clear H1; apply H2; left; assumption. Qed. End sequence. (*****************************************************************) (** * Definition of Power Series and properties *) (* *) (*****************************************************************) Section Isequence. (*********) Variable An : nat -> R. (*********) Definition Pser (x l:R) : Prop := infinite_sum (fun n:nat => An n * x ^ n) l. End Isequence. Lemma GP_infinite : forall x:R, Rabs x < 1 -> Pser (fun n:nat => 1) x (/ (1 - x)). Proof. intros; unfold Pser; unfold infinite_sum; intros; elim (Req_dec x 0). intros; exists 0%nat; intros; rewrite H1; rewrite Rminus_0_r; rewrite Rinv_1; cut (sum_f_R0 (fun n0:nat => 1 * 0 ^ n0) n = 1). intros; rewrite H3; rewrite R_dist_eq; auto. elim n; simpl. ring. intros; rewrite H3; ring. intro; cut (0 < eps * (Rabs (1 - x) * Rabs (/ x))). intro; elim (pow_lt_1_zero x H (eps * (Rabs (1 - x) * Rabs (/ x))) H2); intro N; intros; exists N; intros; cut (sum_f_R0 (fun n0:nat => 1 * x ^ n0) n = sum_f_R0 (fun n0:nat => x ^ n0) n). intros; rewrite H5; apply (Rmult_lt_reg_l (Rabs (1 - x)) (R_dist (sum_f_R0 (fun n0:nat => x ^ n0) n) (/ (1 - x))) eps). apply Rabs_pos_lt. apply Rminus_eq_contra. apply Rlt_dichotomy_converse. right; unfold Rgt. apply (Rle_lt_trans x (Rabs x) 1). apply RRle_abs. assumption. unfold R_dist; rewrite <- Rabs_mult. rewrite Rmult_minus_distr_l. cut ((1 - x) * sum_f_R0 (fun n0:nat => x ^ n0) n = - (sum_f_R0 (fun n0:nat => x ^ n0) n * (x - 1))). intro; rewrite H6. rewrite GP_finite. rewrite Rinv_r. cut (- (x ^ (n + 1) - 1) - 1 = - x ^ (n + 1)). intro; rewrite H7. rewrite Rabs_Ropp; cut ((n + 1)%nat = S n); auto. intro H8; rewrite H8; simpl; rewrite Rabs_mult; apply (Rlt_le_trans (Rabs x * Rabs (x ^ n)) (Rabs x * (eps * (Rabs (1 - x) * Rabs (/ x)))) ( Rabs (1 - x) * eps)). apply Rmult_lt_compat_l. apply Rabs_pos_lt. assumption. auto. cut (Rabs x * (eps * (Rabs (1 - x) * Rabs (/ x))) = Rabs x * Rabs (/ x) * (eps * Rabs (1 - x))). clear H8; intros; rewrite H8; rewrite <- Rabs_mult; rewrite Rinv_r. rewrite Rabs_R1; cut (1 * (eps * Rabs (1 - x)) = Rabs (1 - x) * eps). intros; rewrite H9; unfold Rle; right; reflexivity. ring. assumption. ring. ring. ring. apply Rminus_eq_contra. apply Rlt_dichotomy_converse. right; unfold Rgt. apply (Rle_lt_trans x (Rabs x) 1). apply RRle_abs. assumption. ring; ring. elim n; simpl. ring. intros; rewrite H5. ring. apply Rmult_lt_0_compat. auto. apply Rmult_lt_0_compat. apply Rabs_pos_lt. apply Rminus_eq_contra. apply Rlt_dichotomy_converse. right; unfold Rgt. apply (Rle_lt_trans x (Rabs x) 1). apply RRle_abs. assumption. apply Rabs_pos_lt. apply Rinv_neq_0_compat. assumption. Qed.