(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (*i $Id$ i*) Require Import Compare. Require Import Rbase. Require Import Rfunctions. Require Import Rseries. Require Import PartSum. Require Import Binomial. Open Local Scope R_scope. (* TT Ak; 1<=k<=N *) Boxed Fixpoint prod_f_SO (An:nat -> R) (N:nat) {struct N} : R := match N with | O => 1 | S p => prod_f_SO An p * An (S p) end. (**********) Lemma prod_SO_split : forall (An:nat -> R) (n k:nat), (k <= n)%nat -> prod_f_SO An n = prod_f_SO An k * prod_f_SO (fun l:nat => An (k + l)%nat) (n - k). intros; induction n as [| n Hrecn]. cut (k = 0%nat); [ intro; rewrite H0; simpl in |- *; ring | inversion H; reflexivity ]. cut (k = S n \/ (k <= n)%nat). intro; elim H0; intro. rewrite H1; simpl in |- *; rewrite <- minus_n_n; simpl in |- *; ring. replace (S n - k)%nat with (S (n - k)). simpl in |- *; replace (k + S (n - k))%nat with (S n). rewrite Hrecn; [ ring | assumption ]. apply INR_eq; rewrite S_INR; rewrite plus_INR; rewrite S_INR; rewrite minus_INR; [ ring | assumption ]. apply INR_eq; rewrite S_INR; repeat rewrite minus_INR. rewrite S_INR; ring. apply le_trans with n; [ assumption | apply le_n_Sn ]. assumption. inversion H; [ left; reflexivity | right; assumption ]. Qed. (**********) Lemma prod_SO_pos : forall (An:nat -> R) (N:nat), (forall n:nat, (n <= N)%nat -> 0 <= An n) -> 0 <= prod_f_SO An N. intros; induction N as [| N HrecN]. simpl in |- *; left; apply Rlt_0_1. simpl in |- *; apply Rmult_le_pos. apply HrecN; intros; apply H; apply le_trans with N; [ assumption | apply le_n_Sn ]. apply H; apply le_n. Qed. (**********) Lemma prod_SO_Rle : forall (An Bn:nat -> R) (N:nat), (forall n:nat, (n <= N)%nat -> 0 <= An n <= Bn n) -> prod_f_SO An N <= prod_f_SO Bn N. intros; induction N as [| N HrecN]. right; reflexivity. simpl in |- *; apply Rle_trans with (prod_f_SO An N * Bn (S N)). apply Rmult_le_compat_l. apply prod_SO_pos; intros; elim (H n (le_trans _ _ _ H0 (le_n_Sn N))); intros; assumption. elim (H (S N) (le_n (S N))); intros; assumption. do 2 rewrite <- (Rmult_comm (Bn (S N))); apply Rmult_le_compat_l. elim (H (S N) (le_n (S N))); intros. apply Rle_trans with (An (S N)); assumption. apply HrecN; intros; elim (H n (le_trans _ _ _ H0 (le_n_Sn N))); intros; split; assumption. Qed. (* Application to factorial *) Lemma fact_prodSO : forall n:nat, INR (fact n) = prod_f_SO (fun k:nat => INR k) n. intro; induction n as [| n Hrecn]. reflexivity. change (INR (S n * fact n) = prod_f_SO (fun k:nat => INR k) (S n)) in |- *. rewrite mult_INR; rewrite Rmult_comm; rewrite Hrecn; reflexivity. Qed. Lemma le_n_2n : forall n:nat, (n <= 2 * n)%nat. simple induction n. replace (2 * 0)%nat with 0%nat; [ apply le_n | ring ]. intros; replace (2 * S n0)%nat with (S (S (2 * n0))). apply le_n_S; apply le_S; assumption. replace (S (S (2 * n0))) with (2 * n0 + 2)%nat; [ idtac | ring ]. replace (S n0) with (n0 + 1)%nat; [ idtac | ring ]. ring. Qed. (* We prove that (N!)�<=(2N-k)!*k! forall k in [|O;2N|] *) Lemma RfactN_fact2N_factk : forall N k:nat, (k <= 2 * N)%nat -> Rsqr (INR (fact N)) <= INR (fact (2 * N - k)) * INR (fact k). intros; unfold Rsqr in |- *; repeat rewrite fact_prodSO. cut ((k <= N)%nat \/ (N <= k)%nat). intro; elim H0; intro. rewrite (prod_SO_split (fun l:nat => INR l) (2 * N - k) N). rewrite Rmult_assoc; apply Rmult_le_compat_l. apply prod_SO_pos; intros; apply pos_INR. replace (2 * N - k - N)%nat with (N - k)%nat. rewrite Rmult_comm; rewrite (prod_SO_split (fun l:nat => INR l) N k). apply Rmult_le_compat_l. apply prod_SO_pos; intros; apply pos_INR. apply prod_SO_Rle; intros; split. apply pos_INR. apply le_INR; apply plus_le_compat_r; assumption. assumption. apply INR_eq; repeat rewrite minus_INR. rewrite mult_INR; repeat rewrite S_INR; ring. apply le_trans with N; [ assumption | apply le_n_2n ]. apply (fun p n m:nat => plus_le_reg_l n m p) with k; rewrite <- le_plus_minus. replace (2 * N)%nat with (N + N)%nat; [ idtac | ring ]. apply plus_le_compat_r; assumption. assumption. assumption. apply (fun p n m:nat => plus_le_reg_l n m p) with k; rewrite <- le_plus_minus. replace (2 * N)%nat with (N + N)%nat; [ idtac | ring ]. apply plus_le_compat_r; assumption. assumption. rewrite <- (Rmult_comm (prod_f_SO (fun l:nat => INR l) k)); rewrite (prod_SO_split (fun l:nat => INR l) k N). rewrite Rmult_assoc; apply Rmult_le_compat_l. apply prod_SO_pos; intros; apply pos_INR. rewrite Rmult_comm; rewrite (prod_SO_split (fun l:nat => INR l) N (2 * N - k)). apply Rmult_le_compat_l. apply prod_SO_pos; intros; apply pos_INR. replace (N - (2 * N - k))%nat with (k - N)%nat. apply prod_SO_Rle; intros; split. apply pos_INR. apply le_INR; apply plus_le_compat_r. apply (fun p n m:nat => plus_le_reg_l n m p) with k; rewrite <- le_plus_minus. replace (2 * N)%nat with (N + N)%nat; [ idtac | ring ]; apply plus_le_compat_r; assumption. assumption. apply INR_eq; repeat rewrite minus_INR. rewrite mult_INR; do 2 rewrite S_INR; ring. assumption. apply (fun p n m:nat => plus_le_reg_l n m p) with k; rewrite <- le_plus_minus. replace (2 * N)%nat with (N + N)%nat; [ idtac | ring ]; apply plus_le_compat_r; assumption. assumption. assumption. apply (fun p n m:nat => plus_le_reg_l n m p) with k; rewrite <- le_plus_minus. replace (2 * N)%nat with (N + N)%nat; [ idtac | ring ]; apply plus_le_compat_r; assumption. assumption. assumption. elim (le_dec k N); intro; [ left; assumption | right; assumption ]. Qed. (**********) Lemma INR_fact_lt_0 : forall n:nat, 0 < INR (fact n). intro; apply lt_INR_0; apply neq_O_lt; red in |- *; intro; elim (fact_neq_0 n); symmetry in |- *; assumption. Qed. (* We have the following inequality : (C 2N k) <= (C 2N N) forall k in [|O;2N|] *) Lemma C_maj : forall N k:nat, (k <= 2 * N)%nat -> C (2 * N) k <= C (2 * N) N. intros; unfold C in |- *; unfold Rdiv in |- *; apply Rmult_le_compat_l. apply pos_INR. replace (2 * N - N)%nat with N. apply Rmult_le_reg_l with (INR (fact N) * INR (fact N)). apply Rmult_lt_0_compat; apply INR_fact_lt_0. rewrite <- Rinv_r_sym. rewrite Rmult_comm; apply Rmult_le_reg_l with (INR (fact k) * INR (fact (2 * N - k))). apply Rmult_lt_0_compat; apply INR_fact_lt_0. rewrite Rmult_1_r; rewrite <- mult_INR; rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym. rewrite Rmult_1_l; rewrite mult_INR; rewrite (Rmult_comm (INR (fact k))); replace (INR (fact N) * INR (fact N)) with (Rsqr (INR (fact N))). apply RfactN_fact2N_factk. assumption. reflexivity. rewrite mult_INR; apply prod_neq_R0; apply INR_fact_neq_0. apply prod_neq_R0; apply INR_fact_neq_0. apply INR_eq; rewrite minus_INR; [ rewrite mult_INR; do 2 rewrite S_INR; ring | apply le_n_2n ]. Qed.