(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* x | right _ => y end. (*********) Lemma Rmin_case : forall r1 r2 (P:R -> Type), P r1 -> P r2 -> P (Rmin r1 r2). Proof. intros r1 r2 P H1 H2; unfold Rmin; case (Rle_dec r1 r2); auto. Qed. (*********) Lemma Rmin_case_strong : forall r1 r2 (P:R -> Type), (r1 <= r2 -> P r1) -> (r2 <= r1 -> P r2) -> P (Rmin r1 r2). Proof. intros r1 r2 P H1 H2; unfold Rmin; destruct (Rle_dec r1 r2); auto with real. Qed. (*********) Lemma Rmin_Rgt_l : forall r1 r2 r, Rmin r1 r2 > r -> r1 > r /\ r2 > r. Proof. intros r1 r2 r; unfold Rmin; case (Rle_dec r1 r2) as [Hle|Hnle]; intros. split. assumption. unfold Rgt; exact (Rlt_le_trans r r1 r2 H Hle). split. generalize (Rnot_le_lt r1 r2 Hnle); intro; exact (Rgt_trans r1 r2 r H0 H). assumption. Qed. (*********) Lemma Rmin_Rgt_r : forall r1 r2 r, r1 > r /\ r2 > r -> Rmin r1 r2 > r. Proof. intros; unfold Rmin; case (Rle_dec r1 r2); elim H; clear H; intros; assumption. Qed. (*********) Lemma Rmin_Rgt : forall r1 r2 r, Rmin r1 r2 > r <-> r1 > r /\ r2 > r. Proof. intros; split. exact (Rmin_Rgt_l r1 r2 r). exact (Rmin_Rgt_r r1 r2 r). Qed. (*********) Lemma Rmin_l : forall x y:R, Rmin x y <= x. Proof. intros; unfold Rmin; case (Rle_dec x y); intro H1; [ right; reflexivity | auto with real ]. Qed. (*********) Lemma Rmin_r : forall x y:R, Rmin x y <= y. Proof. intros; unfold Rmin; case (Rle_dec x y); intro H1; [ assumption | auto with real ]. Qed. (*********) Lemma Rmin_left : forall x y, x <= y -> Rmin x y = x. Proof. intros; apply Rmin_case_strong; auto using Rle_antisym. Qed. (*********) Lemma Rmin_right : forall x y, y <= x -> Rmin x y = y. Proof. intros; apply Rmin_case_strong; auto using Rle_antisym. Qed. (*********) Lemma Rle_min_compat_r : forall x y z, x <= y -> Rmin x z <= Rmin y z. Proof. intros; do 2 (apply Rmin_case_strong; intro); eauto using Rle_trans, Rle_refl. Qed. (*********) Lemma Rle_min_compat_l : forall x y z, x <= y -> Rmin z x <= Rmin z y. Proof. intros; do 2 (apply Rmin_case_strong; intro); eauto using Rle_trans, Rle_refl. Qed. (*********) Lemma Rmin_comm : forall x y:R, Rmin x y = Rmin y x. Proof. intros; unfold Rmin; case (Rle_dec x y); case (Rle_dec y x); intros; try reflexivity || (apply Rle_antisym; assumption || auto with real). Qed. (*********) Lemma Rmin_stable_in_posreal : forall x y:posreal, 0 < Rmin x y. Proof. intros; apply Rmin_Rgt_r; split; [ apply (cond_pos x) | apply (cond_pos y) ]. Qed. (*********) Lemma Rmin_pos : forall x y:R, 0 < x -> 0 < y -> 0 < Rmin x y. Proof. intros; unfold Rmin. case (Rle_dec x y); intro; assumption. Qed. (*********) Lemma Rmin_glb : forall x y z:R, z <= x -> z <= y -> z <= Rmin x y. Proof. intros; unfold Rmin; case (Rle_dec x y); intro; assumption. Qed. (*********) Lemma Rmin_glb_lt : forall x y z:R, z < x -> z < y -> z < Rmin x y. Proof. intros; unfold Rmin; case (Rle_dec x y); intro; assumption. Qed. (*******************************) (** * Rmax *) (*******************************) (*********) Definition Rmax (x y:R) : R := match Rle_dec x y with | left _ => y | right _ => x end. (*********) Lemma Rmax_case : forall r1 r2 (P:R -> Type), P r1 -> P r2 -> P (Rmax r1 r2). Proof. intros r1 r2 P H1 H2; unfold Rmax; case (Rle_dec r1 r2); auto. Qed. (*********) Lemma Rmax_case_strong : forall r1 r2 (P:R -> Type), (r2 <= r1 -> P r1) -> (r1 <= r2 -> P r2) -> P (Rmax r1 r2). Proof. intros r1 r2 P H1 H2; unfold Rmax; case (Rle_dec r1 r2); auto with real. Qed. (*********) Lemma Rmax_Rle : forall r1 r2 r, r <= Rmax r1 r2 <-> r <= r1 \/ r <= r2. Proof. intros; split. unfold Rmax; case (Rle_dec r1 r2); intros; auto. intro; unfold Rmax; case (Rle_dec r1 r2) as [|Hnle]; elim H; clear H; intros; auto. apply (Rle_trans r r1 r2); auto. generalize (Rnot_le_lt r1 r2 Hnle); clear Hnle; intro; unfold Rgt in H0; apply (Rlt_le r r1 (Rle_lt_trans r r2 r1 H H0)). Qed. Lemma Rmax_comm : forall x y:R, Rmax x y = Rmax y x. Proof. intros p q; unfold Rmax; case (Rle_dec p q); case (Rle_dec q p); auto; intros H1 H2; apply Rle_antisym; auto with real. Qed. (* begin hide *) Notation RmaxSym := Rmax_comm (only parsing). (* end hide *) (*********) Lemma Rmax_l : forall x y:R, x <= Rmax x y. Proof. intros; unfold Rmax; case (Rle_dec x y); intro H1; [ assumption | auto with real ]. Qed. (*********) Lemma Rmax_r : forall x y:R, y <= Rmax x y. Proof. intros; unfold Rmax; case (Rle_dec x y); intro H1; [ right; reflexivity | auto with real ]. Qed. (* begin hide *) Notation RmaxLess1 := Rmax_l (only parsing). Notation RmaxLess2 := Rmax_r (only parsing). (* end hide *) (*********) Lemma Rmax_left : forall x y, y <= x -> Rmax x y = x. Proof. intros; apply Rmax_case_strong; auto using Rle_antisym. Qed. (*********) Lemma Rmax_right : forall x y, x <= y -> Rmax x y = y. Proof. intros; apply Rmax_case_strong; auto using Rle_antisym. Qed. (*********) Lemma Rle_max_compat_r : forall x y z, x <= y -> Rmax x z <= Rmax y z. Proof. intros; do 2 (apply Rmax_case_strong; intro); eauto using Rle_trans, Rle_refl. Qed. (*********) Lemma Rle_max_compat_l : forall x y z, x <= y -> Rmax z x <= Rmax z y. Proof. intros; do 2 (apply Rmax_case_strong; intro); eauto using Rle_trans, Rle_refl. Qed. (*********) Lemma RmaxRmult : forall (p q:R) r, 0 <= r -> Rmax (r * p) (r * q) = r * Rmax p q. Proof. intros p q r H; unfold Rmax. case (Rle_dec p q); case (Rle_dec (r * p) (r * q)); auto; intros H1 H2; auto. case H; intros E1. case H1; auto with real. rewrite <- E1; repeat rewrite Rmult_0_l; auto. case H; intros E1. case H2; auto with real. apply Rmult_le_reg_l with (r := r); auto. rewrite <- E1; repeat rewrite Rmult_0_l; auto. Qed. (*********) Lemma Rmax_stable_in_negreal : forall x y:negreal, Rmax x y < 0. Proof. intros; unfold Rmax; case (Rle_dec x y); intro; [ apply (cond_neg y) | apply (cond_neg x) ]. Qed. (*********) Lemma Rmax_lub : forall x y z:R, x <= z -> y <= z -> Rmax x y <= z. Proof. intros; unfold Rmax; case (Rle_dec x y); intro; assumption. Qed. (*********) Lemma Rmax_lub_lt : forall x y z:R, x < z -> y < z -> Rmax x y < z. Proof. intros; unfold Rmax; case (Rle_dec x y); intro; assumption. Qed. Lemma Rmax_Rlt : forall x y z, Rmax x y < z <-> x < z /\ y < z. Proof. intros x y z; split. unfold Rmax; case (Rle_dec x y). intros xy yz; split;[apply Rle_lt_trans with y|]; assumption. intros xz xy; split;[|apply Rlt_trans with x;[apply Rnot_le_gt|]];assumption. intros [h h']; apply Rmax_lub_lt; assumption. Qed. (*********) Lemma Rmax_neg : forall x y:R, x < 0 -> y < 0 -> Rmax x y < 0. Proof. intros; unfold Rmax. case (Rle_dec x y); intro; assumption. Qed. (*******************************) (** * Rabsolu *) (*******************************) (*********) Lemma Rcase_abs : forall r, {r < 0} + {r >= 0}. Proof. intro; generalize (Rle_dec 0 r); intro X; elim X; intro H; clear X. right; apply (Rle_ge 0 r H). left; fold (0 > r); apply (Rnot_le_lt 0 r H). Qed. (*********) Definition Rabs r : R := match Rcase_abs r with | left _ => - r | right _ => r end. (*********) Lemma Rabs_R0 : Rabs 0 = 0. Proof. unfold Rabs; case (Rcase_abs 0); auto; intro. generalize (Rlt_irrefl 0); intro; exfalso; auto. Qed. Lemma Rabs_R1 : Rabs 1 = 1. Proof. unfold Rabs; case (Rcase_abs 1); auto with real. intros H; absurd (1 < 0); auto with real. Qed. (*********) Lemma Rabs_no_R0 : forall r, r <> 0 -> Rabs r <> 0. Proof. intros; unfold Rabs; case (Rcase_abs r); intro; auto. apply Ropp_neq_0_compat; auto. Qed. (*********) Lemma Rabs_left : forall r, r < 0 -> Rabs r = - r. Proof. intros; unfold Rabs; case (Rcase_abs r); trivial; intro; absurd (r >= 0). exact (Rlt_not_ge r 0 H). assumption. Qed. (*********) Lemma Rabs_right : forall r, r >= 0 -> Rabs r = r. Proof. intros; unfold Rabs; case (Rcase_abs r) as [Hlt|Hge]. absurd (r >= 0). exact (Rlt_not_ge r 0 Hlt). assumption. trivial. Qed. Lemma Rabs_left1 : forall a:R, a <= 0 -> Rabs a = - a. Proof. intros a H; case H; intros H1. apply Rabs_left; auto. rewrite H1; simpl; rewrite Rabs_right; auto with real. Qed. (*********) Lemma Rabs_pos : forall x:R, 0 <= Rabs x. Proof. intros; unfold Rabs; case (Rcase_abs x) as [Hlt|Hge]. generalize (Ropp_lt_gt_contravar x 0 Hlt); intro; unfold Rgt in H; rewrite Ropp_0 in H; left; assumption. apply Rge_le; assumption. Qed. Lemma Rle_abs : forall x:R, x <= Rabs x. Proof. intro; unfold Rabs; case (Rcase_abs x); intros; lra. Qed. Definition RRle_abs := Rle_abs. Lemma Rabs_le : forall a b, -b <= a <= b -> Rabs a <= b. Proof. intros a b; unfold Rabs; case Rcase_abs. intros _ [it _]; apply Ropp_le_cancel; rewrite Ropp_involutive; exact it. intros _ [_ it]; exact it. Qed. (*********) Lemma Rabs_pos_eq : forall x:R, 0 <= x -> Rabs x = x. Proof. intros; unfold Rabs; case (Rcase_abs x) as [Hlt|Hge]; [ generalize (Rgt_not_le 0 x Hlt); intro; exfalso; auto | trivial ]. Qed. (*********) Lemma Rabs_Rabsolu : forall x:R, Rabs (Rabs x) = Rabs x. Proof. intro; apply (Rabs_pos_eq (Rabs x) (Rabs_pos x)). Qed. (*********) Lemma Rabs_pos_lt : forall x:R, x <> 0 -> 0 < Rabs x. Proof. intros; destruct (Rabs_pos x) as [|Heq]; auto. apply Rabs_no_R0 in H; symmetry in Heq; contradiction. Qed. (*********) Lemma Rabs_minus_sym : forall x y:R, Rabs (x - y) = Rabs (y - x). Proof. intros; unfold Rabs; case (Rcase_abs (x - y)) as [Hlt|Hge]; case (Rcase_abs (y - x)) as [Hlt'|Hge']. apply Rminus_lt, Rlt_asym in Hlt; apply Rminus_lt in Hlt'; contradiction. rewrite (Ropp_minus_distr x y); trivial. rewrite (Ropp_minus_distr y x); trivial. destruct Hge; destruct Hge'. apply Ropp_lt_gt_0_contravar in H; rewrite (Ropp_minus_distr x y) in H; apply Rlt_asym in H0; contradiction. apply Rminus_diag_uniq in H0 as ->; trivial. apply Rminus_diag_uniq in H as ->; trivial. apply Rminus_diag_uniq in H0 as ->; trivial. Qed. (*********) Lemma Rabs_mult : forall x y:R, Rabs (x * y) = Rabs x * Rabs y. Proof. intros; unfold Rabs; case (Rcase_abs (x * y)) as [Hlt|Hge]; case (Rcase_abs x) as [Hltx|Hgex]; case (Rcase_abs y) as [Hlty|Hgey]; auto. apply Rmult_lt_gt_compat_neg_l with (r:=x), Rlt_asym in Hlty; trivial. rewrite Rmult_0_r in Hlty; contradiction. rewrite (Ropp_mult_distr_l_reverse x y); trivial. rewrite (Rmult_comm x (- y)); rewrite (Ropp_mult_distr_l_reverse y x); rewrite (Rmult_comm x y); trivial. destruct Hgex as [| ->], Hgey as [| ->]. apply Rmult_lt_compat_l with (r:=x), Rlt_asym in H0; trivial. rewrite Rmult_0_r in H0; contradiction. rewrite Rmult_0_r in Hlt; contradiction (Rlt_irrefl 0). rewrite Rmult_0_l in Hlt; contradiction (Rlt_irrefl 0). rewrite Rmult_0_l in Hlt; contradiction (Rlt_irrefl 0). rewrite (Rmult_opp_opp x y); trivial. destruct Hge. destruct Hgey. apply Rmult_lt_compat_r with (r:=y), Rlt_asym in Hltx; trivial. rewrite Rmult_0_l in Hltx; contradiction. rewrite H0, Rmult_0_r in H; contradiction (Rlt_irrefl 0). rewrite <- Ropp_mult_distr_l, H, Ropp_0; trivial. destruct Hge. destruct Hgex. apply Rmult_lt_compat_l with (r:=x), Rlt_asym in Hlty; trivial. rewrite Rmult_0_r in Hlty; contradiction. rewrite H0, 2!Rmult_0_l; trivial. rewrite <- Ropp_mult_distr_r, H, Ropp_0; trivial. Qed. (*********) Lemma Rabs_Rinv : forall r, r <> 0 -> Rabs (/ r) = / Rabs r. Proof. intro; unfold Rabs; case (Rcase_abs r) as [Hlt|Hge]; case (Rcase_abs (/ r)) as [Hlt'|Hge']; auto; intros. apply Ropp_inv_permute; auto. rewrite <- Ropp_inv_permute; trivial. destruct Hge' as [| ->]. apply Rinv_lt_0_compat, Rlt_asym in Hlt; contradiction. rewrite Ropp_0; trivial. destruct Hge as [| ->]. apply Rinv_0_lt_compat, Rlt_asym in H0; contradiction. contradiction (refl_equal 0). Qed. Lemma Rabs_Ropp : forall x:R, Rabs (- x) = Rabs x. Proof. intro; replace (-x) with (-1 * x) by ring. rewrite Rabs_mult. replace (Rabs (-1)) with 1. apply Rmult_1_l. unfold Rabs; case (Rcase_abs (-1)). intro; ring. rewrite <- Ropp_0. intro H0; apply Ropp_ge_cancel in H0. elim (Rge_not_lt _ _ H0). apply Rlt_0_1. Qed. (*********) Lemma Rabs_triang : forall a b:R, Rabs (a + b) <= Rabs a + Rabs b. Proof. intros a b; unfold Rabs; case (Rcase_abs (a + b)) as [Hlt|Hge]; case (Rcase_abs a) as [Hlta|Hgea]; case (Rcase_abs b) as [Hltb|Hgeb]. apply (Req_le (- (a + b)) (- a + - b)); rewrite (Ropp_plus_distr a b); reflexivity. (**) rewrite (Ropp_plus_distr a b); apply (Rplus_le_compat_l (- a) (- b) b); unfold Rle; elim Hgeb; intro. left; unfold Rgt in H; generalize (Rplus_lt_compat_l (- b) 0 b H); intro; elim (Rplus_ne (- b)); intros v w; rewrite v in H0; clear v w; rewrite (Rplus_opp_l b) in H0; apply (Rlt_trans (- b) 0 b H0 H). right; rewrite H; apply Ropp_0. (**) rewrite (Ropp_plus_distr a b); rewrite (Rplus_comm (- a) (- b)); rewrite (Rplus_comm a (- b)); apply (Rplus_le_compat_l (- b) (- a) a); unfold Rle; elim Hgea; intro. left; unfold Rgt in H; generalize (Rplus_lt_compat_l (- a) 0 a H); intro; elim (Rplus_ne (- a)); intros v w; rewrite v in H0; clear v w; rewrite (Rplus_opp_l a) in H0; apply (Rlt_trans (- a) 0 a H0 H). right; rewrite H; apply Ropp_0. (**) exfalso; generalize (Rplus_ge_compat_l a b 0 Hgeb); intro; elim (Rplus_ne a); intros v w; rewrite v in H; clear v w; generalize (Rge_trans (a + b) a 0 H Hgea); intro; clear H; unfold Rge in H0; elim H0; intro; clear H0. unfold Rgt in H; generalize (Rlt_asym (a + b) 0 Hlt); intro; auto. absurd (a + b = 0); auto. apply (Rlt_dichotomy_converse (a + b) 0); left; assumption. (**) exfalso; generalize (Rplus_lt_compat_l a b 0 Hltb); intro; elim (Rplus_ne a); intros v w; rewrite v in H; clear v w; generalize (Rlt_trans (a + b) a 0 H Hlta); intro; clear H; destruct Hge. unfold Rgt in H; generalize (Rlt_trans (a + b) 0 (a + b) H0 H); intro; apply (Rlt_irrefl (a + b)); assumption. rewrite H in H0; apply (Rlt_irrefl 0); assumption. (**) rewrite (Rplus_comm a b); rewrite (Rplus_comm (- a) b); apply (Rplus_le_compat_l b a (- a)); apply (Rminus_le a (- a)); unfold Rminus; rewrite (Ropp_involutive a); generalize (Rplus_lt_compat_l a a 0 Hlta); clear Hge Hgeb; intro; elim (Rplus_ne a); intros v w; rewrite v in H; clear v w; generalize (Rlt_trans (a + a) a 0 H Hlta); intro; apply (Rlt_le (a + a) 0 H0). (**) apply (Rplus_le_compat_l a b (- b)); apply (Rminus_le b (- b)); unfold Rminus; rewrite (Ropp_involutive b); generalize (Rplus_lt_compat_l b b 0 Hltb); clear Hge Hgea; intro; elim (Rplus_ne b); intros v w; rewrite v in H; clear v w; generalize (Rlt_trans (b + b) b 0 H Hltb); intro; apply (Rlt_le (b + b) 0 H0). (**) unfold Rle; right; reflexivity. Qed. (*********) Lemma Rabs_triang_inv : forall a b:R, Rabs a - Rabs b <= Rabs (a - b). Proof. intros; apply (Rplus_le_reg_l (Rabs b) (Rabs a - Rabs b) (Rabs (a - b))); unfold Rminus; rewrite <- (Rplus_assoc (Rabs b) (Rabs a) (- Rabs b)); rewrite (Rplus_comm (Rabs b) (Rabs a)); rewrite (Rplus_assoc (Rabs a) (Rabs b) (- Rabs b)); rewrite (Rplus_opp_r (Rabs b)); rewrite (proj1 (Rplus_ne (Rabs a))); replace (Rabs a) with (Rabs (a + 0)). rewrite <- (Rplus_opp_r b); rewrite <- (Rplus_assoc a b (- b)); rewrite (Rplus_comm a b); rewrite (Rplus_assoc b a (- b)). exact (Rabs_triang b (a + - b)). rewrite (proj1 (Rplus_ne a)); trivial. Qed. (* ||a|-|b||<=|a-b| *) Lemma Rabs_triang_inv2 : forall a b:R, Rabs (Rabs a - Rabs b) <= Rabs (a - b). Proof. cut (forall a b:R, Rabs b <= Rabs a -> Rabs (Rabs a - Rabs b) <= Rabs (a - b)). intros; destruct (Rtotal_order (Rabs a) (Rabs b)) as [Hlt| [Heq| Hgt]]. rewrite <- (Rabs_Ropp (Rabs a - Rabs b)); rewrite <- (Rabs_Ropp (a - b)); do 2 rewrite Ropp_minus_distr. apply H; left; assumption. rewrite Heq; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply Rabs_pos. apply H; left; assumption. intros; replace (Rabs (Rabs a - Rabs b)) with (Rabs a - Rabs b). apply Rabs_triang_inv. rewrite (Rabs_right (Rabs a - Rabs b)); [ reflexivity | apply Rle_ge; apply Rplus_le_reg_l with (Rabs b); rewrite Rplus_0_r; replace (Rabs b + (Rabs a - Rabs b)) with (Rabs a); [ assumption | ring ] ]. Qed. (*********) Lemma Rabs_def1 : forall x a:R, x < a -> - a < x -> Rabs x < a. Proof. unfold Rabs; intros; case (Rcase_abs x); intro. generalize (Ropp_lt_gt_contravar (- a) x H0); unfold Rgt; rewrite Ropp_involutive; intro; assumption. assumption. Qed. (*********) Lemma Rabs_def2 : forall x a:R, Rabs x < a -> x < a /\ - a < x. Proof. unfold Rabs; intro x; case (Rcase_abs x) as [Hlt|Hge]; intros. generalize (Ropp_gt_lt_0_contravar x Hlt); unfold Rgt; intro; generalize (Rlt_trans 0 (- x) a H0 H); intro; split. apply (Rlt_trans x 0 a Hlt H1). generalize (Ropp_lt_gt_contravar (- x) a H); rewrite (Ropp_involutive x); unfold Rgt; trivial. fold (a > x) in H; generalize (Rgt_ge_trans a x 0 H Hge); intro; generalize (Ropp_lt_gt_0_contravar a H0); intro; fold (0 > - a); generalize (Rge_gt_trans x 0 (- a) Hge H1); unfold Rgt; intro; split; assumption. Qed. Lemma RmaxAbs : forall (p q:R) r, p <= q -> q <= r -> Rabs q <= Rmax (Rabs p) (Rabs r). Proof. intros p q r H' H'0; case (Rle_or_lt 0 p); intros H'1. repeat rewrite Rabs_right; auto with real. apply Rle_trans with r; auto with real. apply RmaxLess2; auto. apply Rge_trans with p; auto with real; apply Rge_trans with q; auto with real. apply Rge_trans with p; auto with real. rewrite (Rabs_left p); auto. case (Rle_or_lt 0 q); intros H'2. repeat rewrite Rabs_right; auto with real. apply Rle_trans with r; auto. apply RmaxLess2; auto. apply Rge_trans with q; auto with real. rewrite (Rabs_left q); auto. case (Rle_or_lt 0 r); intros H'3. repeat rewrite Rabs_right; auto with real. apply Rle_trans with (- p); auto with real. apply RmaxLess1; auto. rewrite (Rabs_left r); auto. apply Rle_trans with (- p); auto with real. apply RmaxLess1; auto. Qed. Lemma Rabs_Zabs : forall z:Z, Rabs (IZR z) = IZR (Z.abs z). Proof. intros z; case z; unfold Z.abs. apply Rabs_R0. now intros p0; apply Rabs_pos_eq, (IZR_le 0). unfold IZR at 1. intros p0; rewrite Rabs_Ropp. now apply Rabs_pos_eq, (IZR_le 0). Qed. Lemma abs_IZR : forall z, IZR (Z.abs z) = Rabs (IZR z). Proof. intros. now rewrite Rabs_Zabs. Qed. Lemma Ropp_Rmax : forall x y, - Rmax x y = Rmin (-x) (-y). intros x y; apply Rmax_case_strong. now intros w; rewrite Rmin_left;[ | apply Rge_le, Ropp_le_ge_contravar]. now intros w; rewrite Rmin_right; [ | apply Rge_le, Ropp_le_ge_contravar]. Qed. Lemma Ropp_Rmin : forall x y, - Rmin x y = Rmax (-x) (-y). intros x y; apply Rmin_case_strong. now intros w; rewrite Rmax_left;[ | apply Rge_le, Ropp_le_ge_contravar]. now intros w; rewrite Rmax_right; [ | apply Rge_le, Ropp_le_ge_contravar]. Qed. Lemma Rmax_assoc : forall a b c, Rmax a (Rmax b c) = Rmax (Rmax a b) c. Proof. intros a b c. unfold Rmax; destruct (Rle_dec b c); destruct (Rle_dec a b); destruct (Rle_dec a c); destruct (Rle_dec b c); auto with real; match goal with | id : ~ ?x <= ?y, id2 : ?x <= ?z |- _ => case id; apply Rle_trans with z; auto with real | id : ~ ?x <= ?y, id2 : ~ ?z <= ?x |- _ => case id; apply Rle_trans with z; auto with real end. Qed. Lemma Rminmax : forall a b, Rmin a b <= Rmax a b. Proof. intros a b; destruct (Rle_dec a b). rewrite Rmin_left, Rmax_right; assumption. now rewrite Rmin_right, Rmax_left; assumption || apply Rlt_le, Rnot_le_gt. Qed. Lemma Rmin_assoc : forall x y z, Rmin x (Rmin y z) = Rmin (Rmin x y) z. Proof. intros a b c. unfold Rmin; destruct (Rle_dec b c); destruct (Rle_dec a b); destruct (Rle_dec a c); destruct (Rle_dec b c); auto with real; match goal with | id : ~ ?x <= ?y, id2 : ?x <= ?z |- _ => case id; apply Rle_trans with z; auto with real | id : ~ ?x <= ?y, id2 : ~ ?z <= ?x |- _ => case id; apply Rle_trans with z; auto with real end. Qed.