(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* R, forall lb ub, lb < ub -> (forall x y, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x, f lb <= x -> x <= f ub -> (comp f g) x = id x) -> (forall x , f lb <= x -> x <= f ub -> lb <= g x <= ub) -> (forall x y, f lb <= x -> x < y -> y <= f ub -> g x < g y). Proof. intros f g lb ub lb_lt_ub f_incr f_eq_g g_ok x y lb_le_x x_lt_y y_le_ub. assert (x_encad : f lb <= x <= f ub) by lra. assert (y_encad : f lb <= y <= f ub) by lra. assert (gx_encad := g_ok _ (proj1 x_encad) (proj2 x_encad)). assert (gy_encad := g_ok _ (proj1 y_encad) (proj2 y_encad)). case (Rlt_dec (g x) (g y)); [ easy |]. intros Hfalse. assert (Temp := Rnot_lt_le _ _ Hfalse). enough (y <= x) by lra. replace y with (id y) by easy. replace x with (id x) by easy. rewrite <- f_eq_g by easy. rewrite <- f_eq_g by easy. assert (f_incr2 : forall x y, lb <= x -> x <= y -> y < ub -> f x <= f y). { intros m n lb_le_m m_le_n n_lt_ub. case (m_le_n). - intros; apply Rlt_le, f_incr, Rlt_le; assumption. - intros Hyp; rewrite Hyp; apply Req_le; reflexivity. } apply f_incr2; intuition. enough (g x <> ub) by lra. intro Hf. assert (Htemp : (comp f g) x = f ub). { unfold comp; rewrite Hf; reflexivity. } rewrite f_eq_g in Htemp by easy. unfold id in Htemp. lra. Qed. Lemma derivable_pt_id_interv : forall (lb ub x:R), lb <= x <= ub -> derivable_pt id x. Proof. intros. reg. Qed. Lemma pr_nu_var2_interv : forall (f g : R -> R) (lb ub x : R) (pr1 : derivable_pt f x) (pr2 : derivable_pt g x), lb < ub -> lb < x < ub -> (forall h : R, lb < h < ub -> f h = g h) -> derive_pt f x pr1 = derive_pt g x pr2. Proof. intros f g lb ub x Prf Prg lb_lt_ub x_encad local_eq. assert (forall x l, lb < x < ub -> (derivable_pt_abs f x l <-> derivable_pt_abs g x l)). intros a l a_encad. unfold derivable_pt_abs, derivable_pt_lim. split. intros Hyp eps eps_pos. elim (Hyp eps eps_pos) ; intros delta Hyp2. assert (Pos_cond : Rmin delta (Rmin (ub - a) (a - lb)) > 0). clear-a lb ub a_encad delta. apply Rmin_pos ; [exact (delta.(cond_pos)) | apply Rmin_pos ] ; apply Rlt_Rminus ; intuition. exists (mkposreal (Rmin delta (Rmin (ub - a) (a - lb))) Pos_cond). intros h h_neq h_encad. replace (g (a + h) - g a) with (f (a + h) - f a). apply Hyp2 ; intuition. apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))). assumption. apply Rmin_l. assert (local_eq2 : forall h : R, lb < h < ub -> - f h = - g h). intros ; apply Ropp_eq_compat ; intuition. rewrite local_eq ; unfold Rminus. rewrite local_eq2. reflexivity. assumption. assert (Sublemma2 : forall x y, Rabs x < Rabs y -> y > 0 -> x < y). intros m n Hyp_abs y_pos. apply Rlt_le_trans with (r2:=Rabs n). apply Rle_lt_trans with (r2:=Rabs m) ; [ | assumption] ; apply RRle_abs. apply Req_le ; apply Rabs_right ; apply Rgt_ge ; assumption. split. assert (Sublemma : forall x y z, -z < y - x -> x < y + z). intros ; lra. apply Sublemma. apply Sublemma2. rewrite Rabs_Ropp. apply Rlt_le_trans with (r2:=a-lb) ; [| apply RRle_abs] ; apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_r] ; apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption. apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_r] ; apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption. assert (Sublemma : forall x y z, y < z - x -> x + y < z). intros ; lra. apply Sublemma. apply Sublemma2. apply Rlt_le_trans with (r2:=ub-a) ; [| apply RRle_abs] ; apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_l] ; apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption. apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_l] ; apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption. intros Hyp eps eps_pos. elim (Hyp eps eps_pos) ; intros delta Hyp2. assert (Pos_cond : Rmin delta (Rmin (ub - a) (a - lb)) > 0). clear-a lb ub a_encad delta. apply Rmin_pos ; [exact (delta.(cond_pos)) | apply Rmin_pos ] ; apply Rlt_Rminus ; intuition. exists (mkposreal (Rmin delta (Rmin (ub - a) (a - lb))) Pos_cond). intros h h_neq h_encad. replace (f (a + h) - f a) with (g (a + h) - g a). apply Hyp2 ; intuition. apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))). assumption. apply Rmin_l. assert (local_eq2 : forall h : R, lb < h < ub -> - f h = - g h). intros ; apply Ropp_eq_compat ; intuition. rewrite local_eq ; unfold Rminus. rewrite local_eq2. reflexivity. assumption. assert (Sublemma2 : forall x y, Rabs x < Rabs y -> y > 0 -> x < y). intros m n Hyp_abs y_pos. apply Rlt_le_trans with (r2:=Rabs n). apply Rle_lt_trans with (r2:=Rabs m) ; [ | assumption] ; apply RRle_abs. apply Req_le ; apply Rabs_right ; apply Rgt_ge ; assumption. split. assert (Sublemma : forall x y z, -z < y - x -> x < y + z). intros ; lra. apply Sublemma. apply Sublemma2. rewrite Rabs_Ropp. apply Rlt_le_trans with (r2:=a-lb) ; [| apply RRle_abs] ; apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_r] ; apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption. apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_r] ; apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption. assert (Sublemma : forall x y z, y < z - x -> x + y < z). intros ; lra. apply Sublemma. apply Sublemma2. apply Rlt_le_trans with (r2:=ub-a) ; [| apply RRle_abs] ; apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_l] ; apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption. apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_l] ; apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption. unfold derivable_pt in Prf. unfold derivable_pt in Prg. elim Prf; intros x0 p. elim Prg; intros x1 p0. assert (Temp := p); rewrite H in Temp. unfold derivable_pt_abs in p. unfold derivable_pt_abs in p0. simpl in |- *. apply (uniqueness_limite g x x0 x1 Temp p0). assumption. Qed. (* begin hide *) Lemma leftinv_is_rightinv : forall (f g:R->R), (forall x y, x < y -> f x < f y) -> (forall x, (comp f g) x = id x) -> (forall x, (comp g f) x = id x). Proof. intros f g f_incr Hyp x. assert (forall x, f (g (f x)) = f x). intros ; apply Hyp. assert(f_inj : forall x y, f x = f y -> x = y). intros a b fa_eq_fb. case(total_order_T a b). intro s ; case s ; clear s. intro Hf. assert (Hfalse := f_incr a b Hf). apply False_ind. apply (Rlt_not_eq (f a) (f b)) ; assumption. intuition. intro Hf. assert (Hfalse := f_incr b a Hf). apply False_ind. apply (Rlt_not_eq (f b) (f a)) ; [|symmetry] ; assumption. apply f_inj. unfold comp. unfold comp in Hyp. rewrite Hyp. unfold id. reflexivity. Qed. (* end hide *) Lemma leftinv_is_rightinv_interv : forall (f g:R->R) (lb ub:R), (forall x y, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall y, f lb <= y -> y <= f ub -> (comp f g) y = id y) -> (forall x, f lb <= x -> x <= f ub -> lb <= g x <= ub) -> forall x, lb <= x <= ub -> (comp g f) x = id x. Proof. intros f g lb ub f_incr_interv Hyp g_wf x x_encad. assert(f_inj : forall x y, lb <= x <= ub -> lb <= y <= ub -> f x = f y -> x = y). intros a b a_encad b_encad fa_eq_fb. case(total_order_T a b). intro s ; case s ; clear s. intro Hf. assert (Hfalse := f_incr_interv a b (proj1 a_encad) Hf (proj2 b_encad)). apply False_ind. apply (Rlt_not_eq (f a) (f b)) ; assumption. intuition. intro Hf. assert (Hfalse := f_incr_interv b a (proj1 b_encad) Hf (proj2 a_encad)). apply False_ind. apply (Rlt_not_eq (f b) (f a)) ; [|symmetry] ; assumption. assert (f_incr_interv2 : forall x y, lb <= x -> x <= y -> y <= ub -> f x <= f y). intros m n cond1 cond2 cond3. case cond2. intro cond. apply Rlt_le ; apply f_incr_interv ; assumption. intro cond ; right ; rewrite cond ; reflexivity. assert (Hyp2:forall x, lb <= x <= ub -> f (g (f x)) = f x). intros ; apply Hyp. apply f_incr_interv2 ; intuition. apply f_incr_interv2 ; intuition. unfold comp ; unfold comp in Hyp. apply f_inj. apply g_wf ; apply f_incr_interv2 ; intuition. unfold id ; assumption. apply Hyp2 ; unfold id ; assumption. Qed. (** Intermediate Value Theorem on an Interval (Proof mainly taken from Reals.Rsqrt_def) and its corollary *) Lemma IVT_interv_prelim0 : forall (x y:R) (P:R->bool) (N:nat), x < y -> x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y. Proof. assert (Sublemma : forall x y lb ub, lb <= x <= ub /\ lb <= y <= ub -> lb <= (x+y) / 2 <= ub). intros x y lb ub Hyp. lra. intros x y P N x_lt_y. induction N. simpl ; intuition. simpl. case (P ((Dichotomy_lb x y P N + Dichotomy_ub x y P N) / 2)). split. apply Sublemma ; intuition. intuition. split. intuition. apply Sublemma ; intuition. Qed. Lemma IVT_interv_prelim1 : forall (x y x0:R) (D : R -> bool), x < y -> Un_cv (dicho_up x y D) x0 -> x <= x0 <= y. Proof. intros x y x0 D x_lt_y bnd. assert (Main : forall n, x <= dicho_up x y D n <= y). intro n. unfold dicho_up. apply (proj1 (IVT_interv_prelim0 x y D n x_lt_y)). split. apply Rle_cv_lim with (Vn:=dicho_up x y D) (Un:=fun n => x). intro n ; exact (proj1 (Main n)). unfold Un_cv ; intros ; exists 0%nat ; intros ; unfold R_dist ; replace (x -x) with 0 by field ; rewrite Rabs_R0 ; assumption. assumption. apply Rle_cv_lim with (Un:=dicho_up x y D) (Vn:=fun n => y). intro n ; exact (proj2 (Main n)). assumption. unfold Un_cv ; intros ; exists 0%nat ; intros ; unfold R_dist ; replace (y -y) with 0 by field ; rewrite Rabs_R0 ; assumption. Qed. Lemma IVT_interv : forall (f : R -> R) (x y : R), (forall a, x <= a <= y -> continuity_pt f a) -> x < y -> f x < 0 -> 0 < f y -> {z : R | x <= z <= y /\ f z = 0}. Proof. intros. (* f x y f_cont_interv x_lt_y fx_neg fy_pos.*) cut (x <= y). intro. generalize (dicho_lb_cv x y (fun z:R => cond_positivity (f z)) H3). generalize (dicho_up_cv x y (fun z:R => cond_positivity (f z)) H3). intros X X0. elim X; intros x0 p. elim X0; intros x1 p0. assert (H4 := cv_dicho _ _ _ _ _ H3 p0 p). rewrite H4 in p0. exists x0. split. split. apply Rle_trans with (dicho_lb x y (fun z:R => cond_positivity (f z)) 0). simpl in |- *. right; reflexivity. apply growing_ineq. apply dicho_lb_growing; assumption. assumption. apply Rle_trans with (dicho_up x y (fun z:R => cond_positivity (f z)) 0). apply decreasing_ineq. apply dicho_up_decreasing; assumption. assumption. right; reflexivity. 2: left; assumption. set (Vn := fun n:nat => dicho_lb x y (fun z:R => cond_positivity (f z)) n). set (Wn := fun n:nat => dicho_up x y (fun z:R => cond_positivity (f z)) n). cut ((forall n:nat, f (Vn n) <= 0) -> f x0 <= 0). cut ((forall n:nat, 0 <= f (Wn n)) -> 0 <= f x0). intros. cut (forall n:nat, f (Vn n) <= 0). cut (forall n:nat, 0 <= f (Wn n)). intros. assert (H9 := H6 H8). assert (H10 := H5 H7). apply Rle_antisym; assumption. intro. unfold Wn in |- *. cut (forall z:R, cond_positivity z = true <-> 0 <= z). intro. assert (H8 := dicho_up_car x y (fun z:R => cond_positivity (f z)) n). elim (H7 (f (dicho_up x y (fun z:R => cond_positivity (f z)) n))); intros. apply H9. apply H8. elim (H7 (f y)); intros. apply H12. left; assumption. intro. unfold cond_positivity in |- *. destruct (Rle_dec 0 z) as [|Hnotle]. split. intro; assumption. intro; reflexivity. split. intro feqt;discriminate feqt. intro. elim Hnotle; assumption. unfold Vn in |- *. cut (forall z:R, cond_positivity z = false <-> z < 0). intros. assert (H8 := dicho_lb_car x y (fun z:R => cond_positivity (f z)) n). left. elim (H7 (f (dicho_lb x y (fun z:R => cond_positivity (f z)) n))); intros. apply H9. apply H8. elim (H7 (f x)); intros. apply H12. assumption. intro. unfold cond_positivity in |- *. destruct (Rle_dec 0 z) as [Hle|]. split. intro feqt; discriminate feqt. intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle H7)). split. intro; auto with real. intro; reflexivity. cut (Un_cv Wn x0). intros. assert (Temp : x <= x0 <= y). apply IVT_interv_prelim1 with (D:=(fun z : R => cond_positivity (f z))) ; assumption. assert (H7 := continuity_seq f Wn x0 (H x0 Temp) H5). destruct (total_order_T 0 (f x0)) as [[Hlt|<-]|Hgt]. left; assumption. right; reflexivity. unfold Un_cv in H7; unfold R_dist in H7. cut (0 < - f x0). intro. elim (H7 (- f x0) H8); intros. cut (x2 >= x2)%nat; [ intro | unfold ge in |- *; apply le_n ]. assert (H11 := H9 x2 H10). rewrite Rabs_right in H11. pattern (- f x0) at 1 in H11; rewrite <- Rplus_0_r in H11. unfold Rminus in H11; rewrite (Rplus_comm (f (Wn x2))) in H11. assert (H12 := Rplus_lt_reg_l _ _ _ H11). assert (H13 := H6 x2). elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H13 H12)). apply Rle_ge; left; unfold Rminus in |- *; apply Rplus_le_lt_0_compat. apply H6. exact H8. apply Ropp_0_gt_lt_contravar; assumption. unfold Wn in |- *; assumption. cut (Un_cv Vn x0). intros. assert (Temp : x <= x0 <= y). apply IVT_interv_prelim1 with (D:=(fun z : R => cond_positivity (f z))) ; assumption. assert (H7 := continuity_seq f Vn x0 (H x0 Temp) H5). destruct (total_order_T 0 (f x0)) as [[Hlt|Heq]|]. unfold Un_cv in H7; unfold R_dist in H7. elim (H7 (f x0) Hlt); intros. cut (x2 >= x2)%nat; [ intro | unfold ge; apply le_n ]. assert (H10 := H8 x2 H9). rewrite Rabs_left in H10. pattern (f x0) at 2 in H10; rewrite <- Rplus_0_r in H10. rewrite Ropp_minus_distr' in H10. unfold Rminus in H10. assert (H11 := Rplus_lt_reg_l _ _ _ H10). assert (H12 := H6 x2). cut (0 < f (Vn x2)). intro. elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H13 H12)). rewrite <- (Ropp_involutive (f (Vn x2))). apply Ropp_0_gt_lt_contravar; assumption. apply Rplus_lt_reg_l with (f x0 - f (Vn x2)). rewrite Rplus_0_r; replace (f x0 - f (Vn x2) + (f (Vn x2) - f x0)) with 0; [ unfold Rminus in |- *; apply Rplus_lt_le_0_compat | ring ]. assumption. apply Ropp_0_ge_le_contravar; apply Rle_ge; apply H6. right; rewrite <- Heq; reflexivity. left; assumption. unfold Vn in |- *; assumption. Qed. (* begin hide *) Ltac case_le H := let t := type of H in let h' := fresh in match t with ?x <= ?y => case (total_order_T x y); [intros h'; case h'; clear h' | intros h'; clear -H h'; elimtype False; lra ] end. (* end hide *) Lemma f_interv_is_interv : forall (f:R->R) (lb ub y:R), lb < ub -> f lb <= y <= f ub -> (forall x, lb <= x <= ub -> continuity_pt f x) -> {x | lb <= x <= ub /\ f x = y}. Proof. intros f lb ub y lb_lt_ub y_encad f_cont_interv. case y_encad ; intro y_encad1. case_le y_encad1 ; intros y_encad2 y_encad3 ; case_le y_encad3. intro y_encad4. clear y_encad y_encad1 y_encad3. assert (Cont : forall a : R, lb <= a <= ub -> continuity_pt (fun x => f x - y) a). intros a a_encad. unfold continuity_pt, continue_in, limit1_in, limit_in ; simpl ; unfold R_dist. intros eps eps_pos. elim (f_cont_interv a a_encad eps eps_pos). intros alpha alpha_pos. destruct alpha_pos as (alpha_pos,Temp). exists alpha. split. assumption. intros x x_cond. replace (f x - y - (f a - y)) with (f x - f a) by field. exact (Temp x x_cond). assert (H1 : (fun x : R => f x - y) lb < 0). apply Rlt_minus. assumption. assert (H2 : 0 < (fun x : R => f x - y) ub). apply Rgt_minus ; assumption. destruct (IVT_interv (fun x => f x - y) lb ub Cont lb_lt_ub H1 H2) as (x,Hx). exists x. destruct Hx as (Hyp,Result). intuition. intro H ; exists ub ; intuition. intro H ; exists lb ; intuition. intro H ; exists ub ; intuition. Qed. (** ** The derivative of a reciprocal function *) (** * Continuity of the reciprocal function *) Lemma continuity_pt_recip_prelim : forall (f g:R->R) (lb ub : R) (Pr1:lb < ub), (forall x y, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x, lb <= x <= ub -> (comp g f) x = id x) -> (forall a, lb <= a <= ub -> continuity_pt f a) -> forall b, f lb < b < f ub -> continuity_pt g b. Proof. assert (Sublemma : forall x y z, Rmax x y < z <-> x < z /\ y < z). intros x y z. split. unfold Rmax. case (Rle_dec x y) ; intros Hyp Hyp2. split. apply Rle_lt_trans with (r2:=y) ; assumption. assumption. split. assumption. apply Rlt_trans with (r2:=x). assert (Temp : forall x y, ~ x <= y -> x > y). intros m n Hypmn. intuition. apply Temp ; clear Temp ; assumption. assumption. intros Hyp. unfold Rmax. case (Rle_dec x y). intro ; exact (proj2 Hyp). intro ; exact (proj1 Hyp). assert (Sublemma2 : forall x y z, Rmin x y > z <-> x > z /\ y > z). intros x y z. split. unfold Rmin. case (Rle_dec x y) ; intros Hyp Hyp2. split. assumption. apply Rlt_le_trans with (r2:=x) ; intuition. split. apply Rlt_trans with (r2:=y). intuition. assert (Temp : forall x y, ~ x <= y -> x > y). intros m n Hypmn. intuition. apply Temp ; clear Temp ; assumption. assumption. intros Hyp. unfold Rmin. case (Rle_dec x y). intro ; exact (proj1 Hyp). intro ; exact (proj2 Hyp). assert (Sublemma3 : forall x y, x <= y /\ x <> y -> x < y). intros m n Hyp. unfold Rle in Hyp. destruct Hyp as (Hyp1,Hyp2). case Hyp1. intuition. intro Hfalse ; apply False_ind ; apply Hyp2 ; exact Hfalse. intros f g lb ub lb_lt_ub f_incr_interv f_eq_g f_cont_interv b b_encad. assert (f_incr_interv2 : forall x y, lb <= x -> x <= y -> y <= ub -> f x <= f y). intros m n cond1 cond2 cond3. case cond2. intro cond. apply Rlt_le ; apply f_incr_interv ; assumption. intro cond ; right ; rewrite cond ; reflexivity. unfold continuity_pt, continue_in, limit1_in, limit_in ; intros eps eps_pos. unfold dist ; simpl ; unfold R_dist. assert (b_encad_e : f lb <= b <= f ub) by intuition. elim (f_interv_is_interv f lb ub b lb_lt_ub b_encad_e f_cont_interv) ; intros x Temp. destruct Temp as (x_encad,f_x_b). assert (lb_lt_x : lb < x). assert (Temp : x <> lb). intro Hfalse. assert (Temp' : b = f lb). rewrite <- f_x_b ; rewrite Hfalse ; reflexivity. assert (Temp'' : b <> f lb). apply Rgt_not_eq ; exact (proj1 b_encad). apply Temp'' ; exact Temp'. apply Sublemma3. split. exact (proj1 x_encad). assert (Temp2 : forall x y:R, x <> y <-> y <> x). intros m n. split ; intuition. rewrite Temp2 ; assumption. assert (x_lt_ub : x < ub). assert (Temp : x <> ub). intro Hfalse. assert (Temp' : b = f ub). rewrite <- f_x_b ; rewrite Hfalse ; reflexivity. assert (Temp'' : b <> f ub). apply Rlt_not_eq ; exact (proj2 b_encad). apply Temp'' ; exact Temp'. apply Sublemma3. split ; [exact (proj2 x_encad) | assumption]. pose (x1 := Rmax (x - eps) lb). pose (x2 := Rmin (x + eps) ub). assert (Hx1 : x1 = Rmax (x - eps) lb) by intuition. assert (Hx2 : x2 = Rmin (x + eps) ub) by intuition. assert (x1_encad : lb <= x1 <= ub). split. apply RmaxLess2. apply Rlt_le. rewrite Hx1. rewrite Sublemma. split. apply Rlt_trans with (r2:=x) ; lra. assumption. assert (x2_encad : lb <= x2 <= ub). split. apply Rlt_le ; rewrite Hx2 ; apply Rgt_lt ; rewrite Sublemma2. split. apply Rgt_trans with (r2:=x) ; lra. assumption. apply Rmin_r. assert (x_lt_x2 : x < x2). rewrite Hx2. apply Rgt_lt. rewrite Sublemma2. split ; lra. assert (x1_lt_x : x1 < x). rewrite Hx1. rewrite Sublemma. split ; lra. exists (Rmin (f x - f x1) (f x2 - f x)). split. apply Rmin_pos ; apply Rgt_minus. apply f_incr_interv ; [apply RmaxLess2 | | ] ; lra. apply f_incr_interv ; intuition. intros y Temp. destruct Temp as (_,y_cond). rewrite <- f_x_b in y_cond. assert (Temp : forall x y d1 d2, d1 > 0 -> d2 > 0 -> Rabs (y - x) < Rmin d1 d2 -> x - d1 <= y <= x + d2). intros. split. assert (H10 : forall x y z, x - y <= z -> x - z <= y). intuition. lra. apply H10. apply Rle_trans with (r2:=Rabs (y0 - x0)). replace (Rabs (y0 - x0)) with (Rabs (x0 - y0)). apply RRle_abs. rewrite <- Rabs_Ropp. unfold Rminus ; rewrite Ropp_plus_distr. rewrite Ropp_involutive. intuition. apply Rle_trans with (r2:= Rmin d1 d2). apply Rlt_le ; assumption. apply Rmin_l. assert (H10 : forall x y z, x - y <= z -> x <= y + z). intuition. lra. apply H10. apply Rle_trans with (r2:=Rabs (y0 - x0)). apply RRle_abs. apply Rle_trans with (r2:= Rmin d1 d2). apply Rlt_le ; assumption. apply Rmin_r. assert (Temp' := Temp (f x) y (f x - f x1) (f x2 - f x)). replace (f x - (f x - f x1)) with (f x1) in Temp' by field. replace (f x + (f x2 - f x)) with (f x2) in Temp' by field. assert (T : f x - f x1 > 0). apply Rgt_minus. apply f_incr_interv ; intuition. assert (T' : f x2 - f x > 0). apply Rgt_minus. apply f_incr_interv ; intuition. assert (Main := Temp' T T' y_cond). clear Temp Temp' T T'. assert (x1_lt_x2 : x1 < x2). apply Rlt_trans with (r2:=x) ; assumption. assert (f_cont_myinterv : forall a : R, x1 <= a <= x2 -> continuity_pt f a). intros ; apply f_cont_interv ; split. apply Rle_trans with (r2 := x1) ; intuition. apply Rle_trans with (r2 := x2) ; intuition. elim (f_interv_is_interv f x1 x2 y x1_lt_x2 Main f_cont_myinterv) ; intros x' Temp. destruct Temp as (x'_encad,f_x'_y). rewrite <- f_x_b ; rewrite <- f_x'_y. unfold comp in f_eq_g. rewrite f_eq_g. rewrite f_eq_g. unfold id. assert (x'_encad2 : x - eps <= x' <= x + eps). split. apply Rle_trans with (r2:=x1) ; [ apply RmaxLess1|] ; intuition. apply Rle_trans with (r2:=x2) ; [ | apply Rmin_l] ; intuition. assert (x1_lt_x' : x1 < x'). apply Sublemma3. assert (x1_neq_x' : x1 <> x'). intro Hfalse. rewrite Hfalse, f_x'_y in y_cond. assert (Hf : Rabs (y - f x) < f x - y). apply Rlt_le_trans with (r2:=Rmin (f x - y) (f x2 - f x)). lra. apply Rmin_l. assert(Hfin : f x - y < f x - y). apply Rle_lt_trans with (r2:=Rabs (y - f x)). replace (Rabs (y - f x)) with (Rabs (f x - y)). apply RRle_abs. rewrite <- Rabs_Ropp. replace (- (f x - y)) with (y - f x) by field ; reflexivity. lra. apply (Rlt_irrefl (f x - y)) ; assumption. split ; intuition. assert (x'_lb : x - eps < x'). apply Sublemma3. split. intuition. apply Rlt_not_eq. apply Rle_lt_trans with (r2:=x1) ; [ apply RmaxLess1|] ; intuition. assert (x'_lt_x2 : x' < x2). apply Sublemma3. assert (x1_neq_x' : x' <> x2). intro Hfalse. rewrite <- Hfalse, f_x'_y in y_cond. assert (Hf : Rabs (y - f x) < y - f x). apply Rlt_le_trans with (r2:=Rmin (f x - f x1) (y - f x)). lra. apply Rmin_r. assert(Hfin : y - f x < y - f x). apply Rle_lt_trans with (r2:=Rabs (y - f x)). apply RRle_abs. lra. apply (Rlt_irrefl (y - f x)) ; assumption. split ; intuition. assert (x'_ub : x' < x + eps). apply Sublemma3. split. intuition. apply Rlt_not_eq. apply Rlt_le_trans with (r2:=x2) ; [ |rewrite Hx2 ; apply Rmin_l] ; intuition. apply Rabs_def1 ; lra. assumption. split. apply Rle_trans with (r2:=x1) ; intuition. apply Rle_trans with (r2:=x2) ; intuition. Qed. Lemma continuity_pt_recip_interv : forall (f g:R->R) (lb ub : R) (Pr1:lb < ub), (forall x y, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x, f lb <= x -> x <= f ub -> (comp f g) x = id x) -> (forall x, f lb <= x -> x <= f ub -> lb <= g x <= ub) -> (forall a, lb <= a <= ub -> continuity_pt f a) -> forall b, f lb < b < f ub -> continuity_pt g b. Proof. intros f g lb ub lb_lt_ub f_incr_interv f_eq_g g_wf. assert (g_eq_f_prelim := leftinv_is_rightinv_interv f g lb ub f_incr_interv f_eq_g). assert (g_eq_f : forall x, lb <= x <= ub -> (comp g f) x = id x). intro x ; apply g_eq_f_prelim ; assumption. apply (continuity_pt_recip_prelim f g lb ub lb_lt_ub f_incr_interv g_eq_f). Qed. (** * Derivability of the reciprocal function *) Lemma derivable_pt_lim_recip_interv : forall (f g:R->R) (lb ub x:R) (Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a) (Prg : continuity_pt g x), lb < ub -> lb < x < ub -> forall (Prg_incr:g lb <= g x <= g ub), (forall x, lb <= x <= ub -> (comp f g) x = id x) -> derive_pt f (g x) (Prf (g x) Prg_incr) <> 0 -> derivable_pt_lim g x (1 / derive_pt f (g x) (Prf (g x) Prg_incr)). Proof. intros f g lb ub x Prf g_cont_pur lb_lt_ub x_encad Prg_incr f_eq_g df_neq. assert (x_encad2 : lb <= x <= ub). split ; apply Rlt_le ; intuition. elim (Prf (g x)); simpl; intros l Hl. unfold derivable_pt_lim. intros eps eps_pos. pose (y := g x). assert (Hlinv := limit_inv). assert (Hf_deriv : forall eps:R, 0 < eps -> exists delta : posreal, (forall h:R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps)). intros eps0 eps0_pos. red in Hl ; red in Hl. elim (Hl eps0 eps0_pos). intros deltatemp Htemp. exists deltatemp ; exact Htemp. elim (Hf_deriv eps eps_pos). intros deltatemp Htemp. red in Hlinv ; red in Hlinv ; unfold dist in Hlinv ; unfold R_dist in Hlinv. assert (Hlinv' := Hlinv (fun h => (f (y+h) - f y)/h) (fun h => h <>0) l 0). unfold limit1_in, limit_in, dist in Hlinv' ; simpl in Hlinv'. unfold R_dist in Hlinv'. assert (Premisse : (forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x : R, (fun h => h <>0) x /\ Rabs (x - 0) < alp -> Rabs ((f (y + x) - f y) / x - l) < eps))). intros eps0 eps0_pos. elim (Hf_deriv eps0 eps0_pos). intros deltatemp' Htemp'. exists deltatemp'. split. exact deltatemp'.(cond_pos). intros htemp cond. apply (Htemp' htemp). exact (proj1 cond). replace (htemp) with (htemp - 0). exact (proj2 cond). intuition. assert (Premisse2 : l <> 0). intro l_null. rewrite l_null in Hl. apply df_neq. rewrite derive_pt_eq. exact Hl. elim (Hlinv' Premisse Premisse2 eps eps_pos). intros alpha cond. assert (alpha_pos := proj1 cond) ; assert (inv_cont := proj2 cond) ; clear cond. unfold derivable, derivable_pt, derivable_pt_abs, derivable_pt_lim in Prf. elim (Hl eps eps_pos). intros delta f_deriv. assert (g_cont := g_cont_pur). unfold continuity_pt, continue_in, limit1_in, limit_in in g_cont. pose (mydelta := Rmin delta alpha). assert (mydelta_pos : mydelta > 0). unfold mydelta, Rmin. case (Rle_dec delta alpha). intro ; exact (delta.(cond_pos)). intro ; exact alpha_pos. elim (g_cont mydelta mydelta_pos). intros delta' new_g_cont. assert(delta'_pos := proj1 (new_g_cont)). clear g_cont ; assert (g_cont := proj2 (new_g_cont)) ; clear new_g_cont. pose (mydelta'' := Rmin delta' (Rmin (x - lb) (ub - x))). assert(mydelta''_pos : mydelta'' > 0). unfold mydelta''. apply Rmin_pos ; [intuition | apply Rmin_pos] ; apply Rgt_minus ; intuition. pose (delta'' := mkposreal mydelta'' mydelta''_pos: posreal). exists delta''. intros h h_neq h_le_delta'. assert (lb <= x +h <= ub). assert (Sublemma2 : forall x y, Rabs x < Rabs y -> y > 0 -> x < y). intros m n Hyp_abs y_pos. apply Rlt_le_trans with (r2:=Rabs n). apply Rle_lt_trans with (r2:=Rabs m) ; [ | assumption] ; apply RRle_abs. apply Req_le ; apply Rabs_right ; apply Rgt_ge ; assumption. assert (lb <= x + h <= ub). split. assert (Sublemma : forall x y z, -z <= y - x -> x <= y + z). intros ; lra. apply Sublemma. apply Rlt_le ; apply Sublemma2. rewrite Rabs_Ropp. apply Rlt_le_trans with (r2:=x-lb) ; [| apply RRle_abs] ; apply Rlt_le_trans with (r2:=Rmin (x - lb) (ub - x)) ; [| apply Rmin_l] ; apply Rlt_le_trans with (r2:=Rmin delta' (Rmin (x - lb) (ub - x))). apply Rlt_le_trans with (r2:=delta''). assumption. intuition. apply Rmin_r. apply Rgt_minus. intuition. assert (Sublemma : forall x y z, y <= z - x -> x + y <= z). intros ; lra. apply Sublemma. apply Rlt_le ; apply Sublemma2. apply Rlt_le_trans with (r2:=ub-x) ; [| apply RRle_abs] ; apply Rlt_le_trans with (r2:=Rmin (x - lb) (ub - x)) ; [| apply Rmin_r] ; apply Rlt_le_trans with (r2:=Rmin delta' (Rmin (x - lb) (ub - x))) ; [| apply Rmin_r] ; assumption. apply Rlt_le_trans with (r2:=delta''). assumption. apply Rle_trans with (r2:=Rmin delta' (Rmin (x - lb) (ub - x))). intuition. apply Rle_trans with (r2:=Rmin (x - lb) (ub - x)). apply Rmin_r. apply Rmin_r. replace ((g (x + h) - g x) / h) with (1/ (h / (g (x + h) - g x))). assert (Hrewr : h = (comp f g ) (x+h) - (comp f g) x). rewrite f_eq_g. rewrite f_eq_g ; unfold id. rewrite Rplus_comm ; unfold Rminus ; rewrite Rplus_assoc ; rewrite Rplus_opp_r. intuition. intuition. assumption. split ; [|intuition]. assert (Sublemma : forall x y z, - z <= y - x -> x <= y + z). intros ; lra. apply Sublemma ; apply Rlt_le ; apply Sublemma2. rewrite Rabs_Ropp. apply Rlt_le_trans with (r2:=x-lb) ; [| apply RRle_abs] ; apply Rlt_le_trans with (r2:=Rmin (x - lb) (ub - x)) ; [| apply Rmin_l] ; apply Rlt_le_trans with (r2:=Rmin delta' (Rmin (x - lb) (ub - x))) ; [| apply Rmin_r] ; assumption. apply Rgt_minus. intuition. field. split. assumption. intro Hfalse. assert (Hf : g (x+h) = g x) by intuition. assert ((comp f g) (x+h) = (comp f g) x). unfold comp ; rewrite Hf ; intuition. assert (Main : x+h = x). replace (x +h) with (id (x+h)) by intuition. assert (Temp : x = id x) by intuition ; rewrite Temp at 2 ; clear Temp. rewrite <- f_eq_g. rewrite <- f_eq_g. assumption. intuition. assumption. assert (h = 0). apply Rplus_0_r_uniq with (r:=x) ; assumption. apply h_neq ; assumption. replace ((g (x + h) - g x) / h) with (1/ (h / (g (x + h) - g x))). assert (Hrewr : h = (comp f g ) (x+h) - (comp f g) x). rewrite f_eq_g. rewrite f_eq_g. unfold id ; rewrite Rplus_comm ; unfold Rminus ; rewrite Rplus_assoc ; rewrite Rplus_opp_r ; intuition. assumption. assumption. rewrite Hrewr at 1. unfold comp. replace (g(x+h)) with (g x + (g (x+h) - g(x))) by field. pose (h':=g (x+h) - g x). replace (g (x+h) - g x) with h' by intuition. replace (g x + h' - g x) with h' by field. assert (h'_neq : h' <> 0). unfold h'. intro Hfalse. unfold Rminus in Hfalse ; apply Rminus_diag_uniq in Hfalse. assert (Hfalse' : (comp f g) (x+h) = (comp f g) x). intros ; unfold comp ; rewrite Hfalse ; trivial. rewrite f_eq_g in Hfalse' ; rewrite f_eq_g in Hfalse'. unfold id in Hfalse'. apply Rplus_0_r_uniq in Hfalse'. apply h_neq ; exact Hfalse'. assumption. assumption. assumption. unfold Rdiv at 1 3; rewrite Rmult_1_l ; rewrite Rmult_1_l. apply inv_cont. split. exact h'_neq. rewrite Rminus_0_r. unfold continuity_pt, continue_in, limit1_in, limit_in in g_cont_pur. elim (g_cont_pur mydelta mydelta_pos). intros delta3 cond3. unfold dist in cond3 ; simpl in cond3 ; unfold R_dist in cond3. unfold h'. assert (mydelta_le_alpha : mydelta <= alpha). unfold mydelta, Rmin ; case (Rle_dec delta alpha). trivial. intro ; intuition. apply Rlt_le_trans with (r2:=mydelta). unfold dist in g_cont ; simpl in g_cont ; unfold R_dist in g_cont ; apply g_cont. split. unfold D_x ; simpl. split. unfold no_cond ; trivial. intro Hfalse ; apply h_neq. apply (Rplus_0_r_uniq x). symmetry ; assumption. replace (x + h - x) with h by field. apply Rlt_le_trans with (r2:=delta''). assumption ; unfold delta''. intuition. apply Rle_trans with (r2:=mydelta''). apply Req_le. unfold delta''. intuition. apply Rmin_l. assumption. field ; split. assumption. intro Hfalse ; apply h_neq. apply (Rplus_0_r_uniq x). assert (Hfin : (comp f g) (x+h) = (comp f g) x). apply Rminus_diag_uniq in Hfalse. unfold comp. rewrite Hfalse ; reflexivity. rewrite f_eq_g in Hfin. rewrite f_eq_g in Hfin. unfold id in Hfin. exact Hfin. assumption. assumption. Qed. Lemma derivable_pt_recip_interv_prelim0 : forall (f g : R -> R) (lb ub x : R) (Prf : forall a : R, g lb <= a <= g ub -> derivable_pt f a), continuity_pt g x -> lb < ub -> lb < x < ub -> forall Prg_incr : g lb <= g x <= g ub, (forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0) -> derive_pt f (g x) (Prf (g x) Prg_incr) <> 0 -> derivable_pt g x. Proof. intros f g lb ub x Prf g_cont_pt lb_lt_ub x_encad Prg_incr f_eq_g Df_neq. unfold derivable_pt, derivable_pt_abs. exists (1 / derive_pt f (g x) (Prf (g x) Prg_incr)). apply derivable_pt_lim_recip_interv ; assumption. Qed. Lemma derivable_pt_recip_interv_prelim1 :forall (f g:R->R) (lb ub x : R), lb < ub -> f lb < x < f ub -> (forall x : R, f lb <= x -> x <= f ub -> comp f g x = id x) -> (forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall a : R, lb <= a <= ub -> derivable_pt f a) -> derivable_pt f (g x). Proof. intros f g lb ub x lb_lt_ub x_encad f_eq_g g_ok f_incr f_derivable. apply f_derivable. assert (Left_inv := leftinv_is_rightinv_interv f g lb ub f_incr f_eq_g g_ok). replace lb with ((comp g f) lb). replace ub with ((comp g f) ub). unfold comp. assert (Temp:= f_incr_implies_g_incr_interv f g lb ub lb_lt_ub f_incr f_eq_g g_ok). split ; apply Rlt_le ; apply Temp ; intuition. apply Left_inv ; intuition. apply Left_inv ; intuition. Qed. Lemma derivable_pt_recip_interv : forall (f g:R->R) (lb ub x : R) (lb_lt_ub:lb < ub) (x_encad:f lb < x < f ub) (f_eq_g:forall x : R, f lb <= x -> x <= f ub -> comp f g x = id x) (g_wf:forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) (f_incr:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) (f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a), derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0 -> derivable_pt g x. Proof. intros f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable Df_neq. assert(g_incr : g (f lb) < g x < g (f ub)). assert (Temp:= f_incr_implies_g_incr_interv f g lb ub lb_lt_ub f_incr f_eq_g g_wf). split ; apply Temp ; intuition. exact (proj1 x_encad). apply Rlt_le ; exact (proj2 x_encad). apply Rlt_le ; exact (proj1 x_encad). exact (proj2 x_encad). assert(g_incr2 : g (f lb) <= g x <= g (f ub)). split ; apply Rlt_le ; intuition. assert (g_eq_f := leftinv_is_rightinv_interv f g lb ub f_incr f_eq_g g_wf). unfold comp, id in g_eq_f. assert (f_derivable2 : forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a). intros a a_encad ; apply f_derivable. rewrite g_eq_f in a_encad ; rewrite g_eq_f in a_encad ; intuition. apply derivable_pt_recip_interv_prelim0 with (f:=f) (lb:=f lb) (ub:=f ub) (Prf:=f_derivable2) (Prg_incr:=g_incr2). apply continuity_pt_recip_interv with (f:=f) (lb:=lb) (ub:=ub) ; intuition. apply derivable_continuous_pt ; apply f_derivable ; intuition. exact (proj1 x_encad). exact (proj2 x_encad). apply f_incr ; intuition. assumption. intros x0 x0_encad ; apply f_eq_g ; intuition. rewrite pr_nu_var2_interv with (g:=f) (lb:=lb) (ub:=ub) (pr2:=derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) ; [| |rewrite g_eq_f in g_incr ; rewrite g_eq_f in g_incr| ] ; intuition. Qed. (****************************************************) (** * Value of the derivative of the reciprocal function *) (****************************************************) Lemma derive_pt_recip_interv_prelim0 : forall (f g:R->R) (lb ub x:R) (Prf:derivable_pt f (g x)) (Prg:derivable_pt g x), lb < ub -> lb < x < ub -> (forall x, lb < x < ub -> (comp f g) x = id x) -> derive_pt f (g x) Prf <> 0 -> derive_pt g x Prg = 1 / (derive_pt f (g x) Prf). Proof. intros f g lb ub x Prf Prg lb_lt_ub x_encad local_recip Df_neq. replace (derive_pt g x Prg) with ((derive_pt g x Prg) * (derive_pt f (g x) Prf) * / (derive_pt f (g x) Prf)). unfold Rdiv. rewrite (Rmult_comm _ (/ derive_pt f (g x) Prf)). rewrite (Rmult_comm _ (/ derive_pt f (g x) Prf)). apply Rmult_eq_compat_l. rewrite Rmult_comm. rewrite <- derive_pt_comp. assert (x_encad2 : lb <= x <= ub) by intuition. rewrite pr_nu_var2_interv with (g:=id) (pr2:= derivable_pt_id_interv lb ub x x_encad2) (lb:=lb) (ub:=ub) ; [reg| | |] ; assumption. rewrite Rmult_assoc, Rinv_r. intuition. assumption. Qed. Lemma derive_pt_recip_interv_prelim1_0 : forall (f g:R->R) (lb ub x:R), lb < ub -> f lb < x < f ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) -> (forall x, f lb <= x -> x <= f ub -> (comp f g) x = id x) -> lb < g x < ub. Proof. intros f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g. assert (Temp:= f_incr_implies_g_incr_interv f g lb ub lb_lt_ub f_incr f_eq_g g_wf). assert (Left_inv := leftinv_is_rightinv_interv f g lb ub f_incr f_eq_g g_wf). unfold comp, id in Left_inv. split ; [rewrite <- Left_inv with (x:=lb) | rewrite <- Left_inv ]. apply Temp ; intuition. intuition. apply Temp ; intuition. intuition. Qed. Lemma derive_pt_recip_interv_prelim1_1 : forall (f g:R->R) (lb ub x:R), lb < ub -> f lb < x < f ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) -> (forall x, f lb <= x -> x <= f ub -> (comp f g) x = id x) -> lb <= g x <= ub. Proof. intros f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g. assert (Temp := derive_pt_recip_interv_prelim1_0 f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g). split ; apply Rlt_le ; intuition. Qed. Lemma derive_pt_recip_interv : forall (f g:R->R) (lb ub x:R) (lb_lt_ub:lb < ub) (x_encad:f lb < x < f ub) (f_incr:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) (g_wf:forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) (Prf:forall a : R, lb <= a <= ub -> derivable_pt f a) (f_eq_g:forall x, f lb <= x -> x <= f ub -> (comp f g) x = id x) (Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr Prf) <> 0), derive_pt g x (derivable_pt_recip_interv f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr Prf Df_neq) = 1 / (derive_pt f (g x) (Prf (g x) (derive_pt_recip_interv_prelim1_1 f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g))). Proof. intros. assert(g_incr := (derive_pt_recip_interv_prelim1_1 f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g)). apply derive_pt_recip_interv_prelim0 with (lb:=f lb) (ub:=f ub) ; [intuition |assumption | intuition |]. intro Hfalse ; apply Df_neq. rewrite pr_nu_var2_interv with (g:=f) (lb:=lb) (ub:=ub) (pr2:= (Prf (g x) (derive_pt_recip_interv_prelim1_1 f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g))) ; [intuition | intuition | | intuition]. exact (derive_pt_recip_interv_prelim1_0 f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g). Qed. (****************************************************) (** * Existence of the derivative of a function which is the limit of a sequence of functions *) (****************************************************) (* begin hide *) Lemma ub_lt_2_pos : forall x ub lb, lb < x -> x < ub -> 0 < (ub-lb)/2. Proof. intros x ub lb lb_lt_x x_lt_ub. lra. Qed. Definition mkposreal_lb_ub (x lb ub:R) (lb_lt_x:lb R -> R) (f g:R->R) (x:R) c r, Boule c r x -> (forall y n, Boule c r y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y, Boule c r y -> Un_cv (fun n => fn n y) (f y)) -> (CVU fn' g c r) -> (forall y, Boule c r y -> continuity_pt g y) -> derivable_pt_lim f x (g x). Proof. intros fn fn' f g x c' r xinb Dfn_eq_fn' fn_CV_f fn'_CVU_g g_cont eps eps_pos. assert (eps_8_pos : 0 < eps / 8) by lra. elim (g_cont x xinb _ eps_8_pos) ; clear g_cont ; intros delta1 (delta1_pos, g_cont). destruct (Ball_in_inter _ _ _ _ _ xinb (Boule_center x (mkposreal _ delta1_pos))) as [delta Pdelta]. exists delta; intros h hpos hinbdelta. assert (eps'_pos : 0 < (Rabs h) * eps / 4). unfold Rdiv ; rewrite Rmult_assoc ; apply Rmult_lt_0_compat. apply Rabs_pos_lt ; assumption. lra. destruct (fn_CV_f x xinb ((Rabs h) * eps / 4) eps'_pos) as [N2 fnx_CV_fx]. assert (xhinbxdelta : Boule x delta (x + h)). clear -hinbdelta; apply Rabs_def2 in hinbdelta; unfold Boule; simpl. destruct hinbdelta; apply Rabs_def1; lra. assert (t : Boule c' r (x + h)). apply Pdelta in xhinbxdelta; tauto. destruct (fn_CV_f (x+h) t ((Rabs h) * eps / 4) eps'_pos) as [N1 fnxh_CV_fxh]. clear fn_CV_f t. destruct (fn'_CVU_g (eps/8) eps_8_pos) as [N3 fn'c_CVU_gc]. pose (N := ((N1 + N2) + N3)%nat). assert (Main : Rabs ((f (x+h) - fn N (x+h)) - (f x - fn N x) + (fn N (x+h) - fn N x - h * (g x))) < (Rabs h)*eps). apply Rle_lt_trans with (Rabs (f (x + h) - fn N (x + h) - (f x - fn N x)) + Rabs ((fn N (x + h) - fn N x - h * g x))). solve[apply Rabs_triang]. apply Rle_lt_trans with (Rabs (f (x + h) - fn N (x + h)) + Rabs (- (f x - fn N x)) + Rabs (fn N (x + h) - fn N x - h * g x)). solve[apply Rplus_le_compat_r ; apply Rabs_triang]. rewrite Rabs_Ropp. case (Rlt_le_dec h 0) ; intro sgn_h. assert (pr1 : forall c : R, x + h < c < x -> derivable_pt (fn N) c). intros c c_encad ; unfold derivable_pt. exists (fn' N c) ; apply Dfn_eq_fn'. assert (t : Boule x delta c). apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta; destruct c_encad. apply Rabs_def2 in xinb; apply Rabs_def1; lra. apply Pdelta in t; tauto. assert (pr2 : forall c : R, x + h < c < x -> derivable_pt id c). solve[intros; apply derivable_id]. assert (xh_x : x+h < x) by lra. assert (pr3 : forall c : R, x + h <= c <= x -> continuity_pt (fn N) c). intros c c_encad ; apply derivable_continuous_pt. exists (fn' N c) ; apply Dfn_eq_fn' ; intuition. assert (t : Boule x delta c). apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta. apply Rabs_def2 in xinb; apply Rabs_def1; lra. apply Pdelta in t; tauto. assert (pr4 : forall c : R, x + h <= c <= x -> continuity_pt id c). solve[intros; apply derivable_continuous ; apply derivable_id]. destruct (MVT (fn N) id (x+h) x pr1 pr2 xh_x pr3 pr4) as [c [P Hc]]. assert (Hc' : h * derive_pt (fn N) c (pr1 c P) = (fn N (x+h) - fn N x)). apply Rmult_eq_reg_l with (-1). replace (-1 * (h * derive_pt (fn N) c (pr1 c P))) with (-h * derive_pt (fn N) c (pr1 c P)) by field. replace (-1 * (fn N (x + h) - fn N x)) with (- (fn N (x + h) - fn N x)) by field. replace (-h) with (id x - id (x + h)) by (unfold id; field). rewrite <- Rmult_1_r ; replace 1 with (derive_pt id c (pr2 c P)) by reg. replace (- (fn N (x + h) - fn N x)) with (fn N x - fn N (x + h)) by field. assumption. now apply Rlt_not_eq, IZR_lt. rewrite <- Hc'; clear Hc Hc'. replace (derive_pt (fn N) c (pr1 c P)) with (fn' N c). replace (h * fn' N c - h * g x) with (h * (fn' N c - g x)) by field. rewrite Rabs_mult. apply Rlt_trans with (Rabs h * eps / 4 + Rabs (f x - fn N x) + Rabs h * Rabs (fn' N c - g x)). apply Rplus_lt_compat_r ; apply Rplus_lt_compat_r ; unfold R_dist in fnxh_CV_fxh ; rewrite Rabs_minus_sym ; apply fnxh_CV_fxh. unfold N; omega. apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g x)). apply Rplus_lt_compat_r ; apply Rplus_lt_compat_l. unfold R_dist in fnx_CV_fx ; rewrite Rabs_minus_sym ; apply fnx_CV_fx. unfold N ; omega. replace (fn' N c - g x) with ((fn' N c - g c) + (g c - g x)) by field. apply Rle_lt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g c) + Rabs h * Rabs (g c - g x)). rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ; apply Rplus_le_compat_l ; apply Rplus_le_compat_l ; rewrite <- Rmult_plus_distr_l ; apply Rmult_le_compat_l. solve[apply Rabs_pos]. solve[apply Rabs_triang]. apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x)). apply Rplus_lt_compat_r; apply Rplus_lt_compat_l; apply Rmult_lt_compat_l. apply Rabs_pos_lt ; assumption. rewrite Rabs_minus_sym ; apply fn'c_CVU_gc. unfold N ; omega. assert (t : Boule x delta c). destruct P. apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta. apply Rabs_def2 in xinb; apply Rabs_def1; lra. apply Pdelta in t; tauto. apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8)). rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ; apply Rplus_lt_compat_l ; apply Rplus_lt_compat_l ; rewrite <- Rmult_plus_distr_l ; rewrite <- Rmult_plus_distr_l ; apply Rmult_lt_compat_l. apply Rabs_pos_lt ; assumption. apply Rplus_lt_compat_l ; simpl in g_cont ; apply g_cont ; split ; [unfold D_x ; split |]. solve[unfold no_cond ; intuition]. apply Rgt_not_eq ; exact (proj2 P). apply Rlt_trans with (Rabs h). apply Rabs_def1. apply Rlt_trans with 0. destruct P; lra. apply Rabs_pos_lt ; assumption. rewrite <- Rabs_Ropp, Rabs_pos_eq, Ropp_involutive;[ | lra]. destruct P; lra. clear -Pdelta xhinbxdelta. apply Pdelta in xhinbxdelta; destruct xhinbxdelta as [_ P']. apply Rabs_def2 in P'; simpl in P'; destruct P'; apply Rabs_def1; lra. rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite <- Rmult_plus_distr_l. replace (Rabs h * eps / 4 + (Rabs h * eps / 4 + Rabs h * (eps / 8 + eps / 8))) with (Rabs h * (eps / 4 + eps / 4 + eps / 8 + eps / 8)) by field. apply Rmult_lt_compat_l. apply Rabs_pos_lt ; assumption. lra. assert (H := pr1 c P) ; elim H ; clear H ; intros l Hl. assert (Temp : l = fn' N c). assert (bc'rc : Boule c' r c). assert (t : Boule x delta c). clear - xhinbxdelta P. destruct P; apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta. apply Rabs_def1; lra. apply Pdelta in t; tauto. assert (Hl' := Dfn_eq_fn' c N bc'rc). unfold derivable_pt_abs in Hl; clear -Hl Hl'. apply uniqueness_limite with (f:= fn N) (x:=c) ; assumption. rewrite <- Temp. assert (Hl' : derivable_pt (fn N) c). exists l ; apply Hl. rewrite pr_nu_var with (g:= fn N) (pr2:=Hl'). elim Hl' ; clear Hl' ; intros l' Hl'. assert (Main : l = l'). apply uniqueness_limite with (f:= fn N) (x:=c) ; assumption. rewrite Main ; reflexivity. reflexivity. assert (h_pos : h > 0). case sgn_h ; intro Hyp. assumption. apply False_ind ; apply hpos ; symmetry ; assumption. clear sgn_h. assert (pr1 : forall c : R, x < c < x + h -> derivable_pt (fn N) c). intros c c_encad ; unfold derivable_pt. exists (fn' N c) ; apply Dfn_eq_fn'. assert (t : Boule x delta c). apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta; destruct c_encad. apply Rabs_def2 in xinb; apply Rabs_def1; lra. apply Pdelta in t; tauto. assert (pr2 : forall c : R, x < c < x + h -> derivable_pt id c). solve[intros; apply derivable_id]. assert (xh_x : x < x + h) by lra. assert (pr3 : forall c : R, x <= c <= x + h -> continuity_pt (fn N) c). intros c c_encad ; apply derivable_continuous_pt. exists (fn' N c) ; apply Dfn_eq_fn' ; intuition. assert (t : Boule x delta c). apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta. apply Rabs_def2 in xinb; apply Rabs_def1; lra. apply Pdelta in t; tauto. assert (pr4 : forall c : R, x <= c <= x + h -> continuity_pt id c). solve[intros; apply derivable_continuous ; apply derivable_id]. destruct (MVT (fn N) id x (x+h) pr1 pr2 xh_x pr3 pr4) as [c [P Hc]]. assert (Hc' : h * derive_pt (fn N) c (pr1 c P) = fn N (x+h) - fn N x). pattern h at 1; replace h with (id (x + h) - id x) by (unfold id; field). rewrite <- Rmult_1_r ; replace 1 with (derive_pt id c (pr2 c P)) by reg. assumption. rewrite <- Hc'; clear Hc Hc'. replace (derive_pt (fn N) c (pr1 c P)) with (fn' N c). replace (h * fn' N c - h * g x) with (h * (fn' N c - g x)) by field. rewrite Rabs_mult. apply Rlt_trans with (Rabs h * eps / 4 + Rabs (f x - fn N x) + Rabs h * Rabs (fn' N c - g x)). apply Rplus_lt_compat_r ; apply Rplus_lt_compat_r ; unfold R_dist in fnxh_CV_fxh ; rewrite Rabs_minus_sym ; apply fnxh_CV_fxh. unfold N; omega. apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g x)). apply Rplus_lt_compat_r ; apply Rplus_lt_compat_l. unfold R_dist in fnx_CV_fx ; rewrite Rabs_minus_sym ; apply fnx_CV_fx. unfold N ; omega. replace (fn' N c - g x) with ((fn' N c - g c) + (g c - g x)) by field. apply Rle_lt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g c) + Rabs h * Rabs (g c - g x)). rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ; apply Rplus_le_compat_l ; apply Rplus_le_compat_l ; rewrite <- Rmult_plus_distr_l ; apply Rmult_le_compat_l. solve[apply Rabs_pos]. solve[apply Rabs_triang]. apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x)). apply Rplus_lt_compat_r; apply Rplus_lt_compat_l; apply Rmult_lt_compat_l. apply Rabs_pos_lt ; assumption. rewrite Rabs_minus_sym ; apply fn'c_CVU_gc. unfold N ; omega. assert (t : Boule x delta c). destruct P. apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta. apply Rabs_def2 in xinb; apply Rabs_def1; lra. apply Pdelta in t; tauto. apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8)). rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite Rplus_assoc ; apply Rplus_lt_compat_l ; apply Rplus_lt_compat_l ; rewrite <- Rmult_plus_distr_l ; rewrite <- Rmult_plus_distr_l ; apply Rmult_lt_compat_l. apply Rabs_pos_lt ; assumption. apply Rplus_lt_compat_l ; simpl in g_cont ; apply g_cont ; split ; [unfold D_x ; split |]. solve[unfold no_cond ; intuition]. apply Rlt_not_eq ; exact (proj1 P). apply Rlt_trans with (Rabs h). apply Rabs_def1. destruct P; rewrite Rabs_pos_eq;lra. apply Rle_lt_trans with 0. assert (t := Rabs_pos h); clear -t; lra. clear -P; destruct P; lra. clear -Pdelta xhinbxdelta. apply Pdelta in xhinbxdelta; destruct xhinbxdelta as [_ P']. apply Rabs_def2 in P'; simpl in P'; destruct P'; apply Rabs_def1; lra. rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite <- Rmult_plus_distr_l. replace (Rabs h * eps / 4 + (Rabs h * eps / 4 + Rabs h * (eps / 8 + eps / 8))) with (Rabs h * (eps / 4 + eps / 4 + eps / 8 + eps / 8)) by field. apply Rmult_lt_compat_l. apply Rabs_pos_lt ; assumption. lra. assert (H := pr1 c P) ; elim H ; clear H ; intros l Hl. assert (Temp : l = fn' N c). assert (bc'rc : Boule c' r c). assert (t : Boule x delta c). clear - xhinbxdelta P. destruct P; apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta. apply Rabs_def1; lra. apply Pdelta in t; tauto. assert (Hl' := Dfn_eq_fn' c N bc'rc). unfold derivable_pt_abs in Hl; clear -Hl Hl'. apply uniqueness_limite with (f:= fn N) (x:=c) ; assumption. rewrite <- Temp. assert (Hl' : derivable_pt (fn N) c). exists l ; apply Hl. rewrite pr_nu_var with (g:= fn N) (pr2:=Hl'). elim Hl' ; clear Hl' ; intros l' Hl'. assert (Main : l = l'). apply uniqueness_limite with (f:= fn N) (x:=c) ; assumption. rewrite Main ; reflexivity. reflexivity. replace ((f (x + h) - f x) / h - g x) with ((/h) * ((f (x + h) - f x) - h * g x)). rewrite Rabs_mult ; rewrite Rabs_Rinv. replace eps with (/ Rabs h * (Rabs h * eps)). apply Rmult_lt_compat_l. apply Rinv_0_lt_compat ; apply Rabs_pos_lt ; assumption. replace (f (x + h) - f x - h * g x) with (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) by field. assumption. field ; apply Rgt_not_eq ; apply Rabs_pos_lt ; assumption. assumption. field. assumption. Qed.