(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* R) (x:R), f x <> 0 -> derivable_pt f x -> derivable_pt (/ f) x. Proof. intros f x H X; cut (derivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) x). intro X0; apply X0. apply derivable_pt_div. apply derivable_pt_const. assumption. assumption. unfold div_fct, inv_fct, fct_cte; intro X0; elim X0; intros; unfold derivable_pt; exists x0; unfold derivable_pt_abs; unfold derivable_pt_lim; unfold derivable_pt_abs in p; unfold derivable_pt_lim in p; intros; elim (p eps H0); intros; exists x1; intros; unfold Rdiv in H1; unfold Rdiv; rewrite <- (Rmult_1_l (/ f x)); rewrite <- (Rmult_1_l (/ f (x + h))). apply H1; assumption. Qed. (**********) Lemma pr_nu_var : forall (f g:R -> R) (x:R) (pr1:derivable_pt f x) (pr2:derivable_pt g x), f = g -> derive_pt f x pr1 = derive_pt g x pr2. Proof. unfold derivable_pt, derive_pt; intros. elim pr1; intros. elim pr2; intros. simpl. rewrite H in p. apply uniqueness_limite with g x; assumption. Qed. (**********) Lemma pr_nu_var2 : forall (f g:R -> R) (x:R) (pr1:derivable_pt f x) (pr2:derivable_pt g x), (forall h:R, f h = g h) -> derive_pt f x pr1 = derive_pt g x pr2. Proof. unfold derivable_pt, derive_pt; intros. elim pr1; intros. elim pr2; intros. simpl. assert (H0 := uniqueness_step2 _ _ _ p). assert (H1 := uniqueness_step2 _ _ _ p0). cut (limit1_in (fun h:R => (f (x + h) - f x) / h) (fun h:R => h <> 0) x1 0). intro; assert (H3 := uniqueness_step1 _ _ _ _ H0 H2). assumption. unfold limit1_in; unfold limit_in; unfold dist; simpl; unfold R_dist; unfold limit1_in in H1; unfold limit_in in H1; unfold dist in H1; simpl in H1; unfold R_dist in H1. intros; elim (H1 eps H2); intros. elim H3; intros. exists x2. split. assumption. intros; do 2 rewrite H; apply H5; assumption. Qed. (**********) Lemma derivable_inv : forall f:R -> R, (forall x:R, f x <> 0) -> derivable f -> derivable (/ f). Proof. intros f H X. unfold derivable; intro x. apply derivable_pt_inv. apply (H x). apply (X x). Qed. Lemma derive_pt_inv : forall (f:R -> R) (x:R) (pr:derivable_pt f x) (na:f x <> 0), derive_pt (/ f) x (derivable_pt_inv f x na pr) = - derive_pt f x pr / Rsqr (f x). Proof. intros; replace (derive_pt (/ f) x (derivable_pt_inv f x na pr)) with (derive_pt (fct_cte 1 / f) x (derivable_pt_div (fct_cte 1) f x (derivable_pt_const 1 x) pr na)). rewrite derive_pt_div; rewrite derive_pt_const; unfold fct_cte; rewrite Rmult_0_l; rewrite Rmult_1_r; unfold Rminus; rewrite Rplus_0_l; reflexivity. apply pr_nu_var2. intro; unfold div_fct, fct_cte, inv_fct. unfold Rdiv; ring. Qed. (** Rabsolu *) Lemma Rabs_derive_1 : forall x:R, 0 < x -> derivable_pt_lim Rabs x 1. Proof. intros. unfold derivable_pt_lim; intros. exists (mkposreal x H); intros. rewrite (Rabs_right x). rewrite (Rabs_right (x + h)). rewrite Rplus_comm. unfold Rminus; rewrite Rplus_assoc; rewrite Rplus_opp_r. rewrite Rplus_0_r; unfold Rdiv; rewrite <- Rinv_r_sym. rewrite Rplus_opp_r; rewrite Rabs_R0; apply H0. apply H1. apply Rle_ge. case (Rcase_abs h); intro. rewrite (Rabs_left h r) in H2. left; rewrite Rplus_comm; apply Rplus_lt_reg_l with (- h); rewrite Rplus_0_r; rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l; apply H2. apply Rplus_le_le_0_compat. left; apply H. apply Rge_le; apply r. left; apply H. Qed. Lemma Rabs_derive_2 : forall x:R, x < 0 -> derivable_pt_lim Rabs x (-1). Proof. intros. unfold derivable_pt_lim; intros. cut (0 < - x). intro; exists (mkposreal (- x) H1); intros. rewrite (Rabs_left x). rewrite (Rabs_left (x + h)). rewrite Rplus_comm. rewrite Ropp_plus_distr. unfold Rminus; rewrite Ropp_involutive; rewrite Rplus_assoc; rewrite Rplus_opp_l. rewrite Rplus_0_r; unfold Rdiv. rewrite Ropp_mult_distr_l_reverse. rewrite <- Rinv_r_sym. rewrite Ropp_involutive; rewrite Rplus_opp_l; rewrite Rabs_R0; apply H0. apply H2. case (Rcase_abs h); intro. apply Ropp_lt_cancel. rewrite Ropp_0; rewrite Ropp_plus_distr; apply Rplus_lt_0_compat. apply H1. apply Ropp_0_gt_lt_contravar; apply r. rewrite (Rabs_right h r) in H3. apply Rplus_lt_reg_l with (- x); rewrite Rplus_0_r; rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l; apply H3. apply H. apply Ropp_0_gt_lt_contravar; apply H. Qed. (** Rabsolu is derivable for all x <> 0 *) Lemma Rderivable_pt_abs : forall x:R, x <> 0 -> derivable_pt Rabs x. Proof. intros. case (total_order_T x 0); intro. elim s; intro. unfold derivable_pt; exists (-1). apply (Rabs_derive_2 x a). elim H; exact b. unfold derivable_pt; exists 1. apply (Rabs_derive_1 x r). Qed. (** Rabsolu is continuous for all x *) Lemma Rcontinuity_abs : continuity Rabs. Proof. unfold continuity; intro. case (Req_dec x 0); intro. unfold continuity_pt; unfold continue_in; unfold limit1_in; unfold limit_in; simpl; unfold R_dist; intros; exists eps; split. apply H0. intros; rewrite H; rewrite Rabs_R0; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; rewrite Rabs_Rabsolu; elim H1; intros; rewrite H in H3; unfold Rminus in H3; rewrite Ropp_0 in H3; rewrite Rplus_0_r in H3; apply H3. apply derivable_continuous_pt; apply (Rderivable_pt_abs x H). Qed. (** Finite sums : Sum a_k x^k *) Lemma continuity_finite_sum : forall (An:nat -> R) (N:nat), continuity (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N). Proof. intros; unfold continuity; intro. induction N as [| N HrecN]. simpl. apply continuity_pt_const. unfold constant; intros; reflexivity. replace (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) (S N)) with ((fun y:R => sum_f_R0 (fun k:nat => (An k * y ^ k)%R) N) + (fun y:R => (An (S N) * y ^ S N)%R))%F. apply continuity_pt_plus. apply HrecN. replace (fun y:R => An (S N) * y ^ S N) with (mult_real_fct (An (S N)) (fun y:R => y ^ S N)). apply continuity_pt_scal. apply derivable_continuous_pt. apply derivable_pt_pow. reflexivity. reflexivity. Qed. Lemma derivable_pt_lim_fs : forall (An:nat -> R) (x:R) (N:nat), (0 < N)%nat -> derivable_pt_lim (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N) x (sum_f_R0 (fun k:nat => INR (S k) * An (S k) * x ^ k) (pred N)). Proof. intros; induction N as [| N HrecN]. elim (lt_irrefl _ H). cut (N = 0%nat \/ (0 < N)%nat). intro; elim H0; intro. rewrite H1. simpl. replace (fun y:R => An 0%nat * 1 + An 1%nat * (y * 1)) with (fct_cte (An 0%nat * 1) + mult_real_fct (An 1%nat) (id * fct_cte 1))%F. replace (1 * An 1%nat * 1) with (0 + An 1%nat * (1 * fct_cte 1 x + id x * 0)). apply derivable_pt_lim_plus. apply derivable_pt_lim_const. apply derivable_pt_lim_scal. apply derivable_pt_lim_mult. apply derivable_pt_lim_id. apply derivable_pt_lim_const. unfold fct_cte, id; ring. reflexivity. replace (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) (S N)) with ((fun y:R => sum_f_R0 (fun k:nat => (An k * y ^ k)%R) N) + (fun y:R => (An (S N) * y ^ S N)%R))%F. replace (sum_f_R0 (fun k:nat => INR (S k) * An (S k) * x ^ k) (pred (S N))) with (sum_f_R0 (fun k:nat => INR (S k) * An (S k) * x ^ k) (pred N) + An (S N) * (INR (S (pred (S N))) * x ^ pred (S N))). apply derivable_pt_lim_plus. apply HrecN. assumption. replace (fun y:R => An (S N) * y ^ S N) with (mult_real_fct (An (S N)) (fun y:R => y ^ S N)). apply derivable_pt_lim_scal. replace (pred (S N)) with N; [ idtac | reflexivity ]. pattern N at 3; replace N with (pred (S N)). apply derivable_pt_lim_pow. reflexivity. reflexivity. cut (pred (S N) = S (pred N)). intro; rewrite H2. rewrite tech5. apply Rplus_eq_compat_l. rewrite <- H2. replace (pred (S N)) with N; [ idtac | reflexivity ]. ring. simpl. apply S_pred with 0%nat; assumption. unfold plus_fct. simpl; reflexivity. inversion H. left; reflexivity. right; apply lt_le_trans with 1%nat; [ apply lt_O_Sn | assumption ]. Qed. Lemma derivable_pt_lim_finite_sum : forall (An:nat -> R) (x:R) (N:nat), derivable_pt_lim (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N) x match N with | O => 0 | _ => sum_f_R0 (fun k:nat => INR (S k) * An (S k) * x ^ k) (pred N) end. Proof. intros. induction N as [| N HrecN]. simpl. rewrite Rmult_1_r. replace (fun _:R => An 0%nat) with (fct_cte (An 0%nat)); [ apply derivable_pt_lim_const | reflexivity ]. apply derivable_pt_lim_fs; apply lt_O_Sn. Qed. Lemma derivable_pt_finite_sum : forall (An:nat -> R) (N:nat) (x:R), derivable_pt (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N) x. Proof. intros. unfold derivable_pt. assert (H := derivable_pt_lim_finite_sum An x N). induction N as [| N HrecN]. exists 0; apply H. exists (sum_f_R0 (fun k:nat => INR (S k) * An (S k) * x ^ k) (pred (S N))); apply H. Qed. Lemma derivable_finite_sum : forall (An:nat -> R) (N:nat), derivable (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N). Proof. intros; unfold derivable; intro; apply derivable_pt_finite_sum. Qed. (** Regularity of hyperbolic functions *) Lemma derivable_pt_lim_cosh : forall x:R, derivable_pt_lim cosh x (sinh x). Proof. intro. unfold cosh, sinh; unfold Rdiv. replace (fun x0:R => (exp x0 + exp (- x0)) * / 2) with ((exp + comp exp (- id)) * fct_cte (/ 2))%F; [ idtac | reflexivity ]. replace ((exp x - exp (- x)) * / 2) with ((exp x + exp (- x) * -1) * fct_cte (/ 2) x + (exp + comp exp (- id))%F x * 0). apply derivable_pt_lim_mult. apply derivable_pt_lim_plus. apply derivable_pt_lim_exp. apply derivable_pt_lim_comp. apply derivable_pt_lim_opp. apply derivable_pt_lim_id. apply derivable_pt_lim_exp. apply derivable_pt_lim_const. unfold plus_fct, mult_real_fct, comp, opp_fct, id, fct_cte; ring. Qed. Lemma derivable_pt_lim_sinh : forall x:R, derivable_pt_lim sinh x (cosh x). Proof. intro. unfold cosh, sinh; unfold Rdiv. replace (fun x0:R => (exp x0 - exp (- x0)) * / 2) with ((exp - comp exp (- id)) * fct_cte (/ 2))%F; [ idtac | reflexivity ]. replace ((exp x + exp (- x)) * / 2) with ((exp x - exp (- x) * -1) * fct_cte (/ 2) x + (exp - comp exp (- id))%F x * 0). apply derivable_pt_lim_mult. apply derivable_pt_lim_minus. apply derivable_pt_lim_exp. apply derivable_pt_lim_comp. apply derivable_pt_lim_opp. apply derivable_pt_lim_id. apply derivable_pt_lim_exp. apply derivable_pt_lim_const. unfold plus_fct, mult_real_fct, comp, opp_fct, id, fct_cte; ring. Qed. Lemma derivable_pt_exp : forall x:R, derivable_pt exp x. Proof. intro. unfold derivable_pt. exists (exp x). apply derivable_pt_lim_exp. Qed. Lemma derivable_pt_cosh : forall x:R, derivable_pt cosh x. Proof. intro. unfold derivable_pt. exists (sinh x). apply derivable_pt_lim_cosh. Qed. Lemma derivable_pt_sinh : forall x:R, derivable_pt sinh x. Proof. intro. unfold derivable_pt. exists (cosh x). apply derivable_pt_lim_sinh. Qed. Lemma derivable_exp : derivable exp. Proof. unfold derivable; apply derivable_pt_exp. Qed. Lemma derivable_cosh : derivable cosh. Proof. unfold derivable; apply derivable_pt_cosh. Qed. Lemma derivable_sinh : derivable sinh. Proof. unfold derivable; apply derivable_pt_sinh. Qed. Lemma derive_pt_exp : forall x:R, derive_pt exp x (derivable_pt_exp x) = exp x. Proof. intro; apply derive_pt_eq_0. apply derivable_pt_lim_exp. Qed. Lemma derive_pt_cosh : forall x:R, derive_pt cosh x (derivable_pt_cosh x) = sinh x. Proof. intro; apply derive_pt_eq_0. apply derivable_pt_lim_cosh. Qed. Lemma derive_pt_sinh : forall x:R, derive_pt sinh x (derivable_pt_sinh x) = cosh x. Proof. intro; apply derive_pt_eq_0. apply derivable_pt_lim_sinh. Qed.