(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* r. Proof. exact Rlt_irrefl. Qed. Lemma Rlt_not_eq : forall r1 r2, r1 < r2 -> r1 <> r2. Proof. red; intros r1 r2 H H0; apply (Rlt_irrefl r1). pattern r1 at 2; rewrite H0; trivial. Qed. Lemma Rgt_not_eq : forall r1 r2, r1 > r2 -> r1 <> r2. Proof. intros; apply not_eq_sym; apply Rlt_not_eq; auto with real. Qed. (**********) Lemma Rlt_dichotomy_converse : forall r1 r2, r1 < r2 \/ r1 > r2 -> r1 <> r2. Proof. intuition. - apply Rlt_not_eq in H1. eauto. - apply Rgt_not_eq in H1. eauto. Qed. Hint Resolve Rlt_dichotomy_converse: real. (** Reasoning by case on equality and order *) (**********) Lemma Req_dec : forall r1 r2, r1 = r2 \/ r1 <> r2. Proof. intros; generalize (total_order_T r1 r2) Rlt_dichotomy_converse; unfold not; intuition eauto 3. Qed. Hint Resolve Req_dec: real. (**********) Lemma Rtotal_order : forall r1 r2, r1 < r2 \/ r1 = r2 \/ r1 > r2. Proof. intros; generalize (total_order_T r1 r2); tauto. Qed. (**********) Lemma Rdichotomy : forall r1 r2, r1 <> r2 -> r1 < r2 \/ r1 > r2. Proof. intros; generalize (total_order_T r1 r2); tauto. Qed. (*********************************************************) (** ** Relating [<], [>], [<=] and [>=] *) (*********************************************************) (*********************************************************) (** ** Order *) (*********************************************************) (** *** Relating strict and large orders *) Lemma Rlt_le : forall r1 r2, r1 < r2 -> r1 <= r2. Proof. intros; red; tauto. Qed. Hint Resolve Rlt_le: real. Lemma Rgt_ge : forall r1 r2, r1 > r2 -> r1 >= r2. Proof. intros; red; tauto. Qed. (**********) Lemma Rle_ge : forall r1 r2, r1 <= r2 -> r2 >= r1. Proof. destruct 1; red; auto with real. Qed. Hint Immediate Rle_ge: real. Hint Resolve Rle_ge: rorders. Lemma Rge_le : forall r1 r2, r1 >= r2 -> r2 <= r1. Proof. destruct 1; red; auto with real. Qed. Hint Resolve Rge_le: real. Hint Immediate Rge_le: rorders. (**********) Lemma Rlt_gt : forall r1 r2, r1 < r2 -> r2 > r1. Proof. trivial. Qed. Hint Resolve Rlt_gt: rorders. Lemma Rgt_lt : forall r1 r2, r1 > r2 -> r2 < r1. Proof. trivial. Qed. Hint Immediate Rgt_lt: rorders. (**********) Lemma Rnot_le_lt : forall r1 r2, ~ r1 <= r2 -> r2 < r1. Proof. intros r1 r2; generalize (Rtotal_order r1 r2); unfold Rle; tauto. Qed. Hint Immediate Rnot_le_lt: real. Lemma Rnot_ge_gt : forall r1 r2, ~ r1 >= r2 -> r2 > r1. Proof. intros; red; apply Rnot_le_lt. auto with real. Qed. Lemma Rnot_le_gt : forall r1 r2, ~ r1 <= r2 -> r1 > r2. Proof. intros; red; apply Rnot_le_lt. auto with real. Qed. Lemma Rnot_ge_lt : forall r1 r2, ~ r1 >= r2 -> r1 < r2. Proof. intros; apply Rnot_le_lt. auto with real. Qed. Lemma Rnot_lt_le : forall r1 r2, ~ r1 < r2 -> r2 <= r1. Proof. intros r1 r2 H; destruct (Rtotal_order r1 r2) as [ | [ H0 | H0 ] ]. contradiction. subst; auto with rorders. auto with real. Qed. Lemma Rnot_gt_le : forall r1 r2, ~ r1 > r2 -> r1 <= r2. Proof. auto using Rnot_lt_le with real. Qed. Lemma Rnot_gt_ge : forall r1 r2, ~ r1 > r2 -> r2 >= r1. Proof. intros; eauto using Rnot_lt_le with rorders. Qed. Lemma Rnot_lt_ge : forall r1 r2, ~ r1 < r2 -> r1 >= r2. Proof. eauto using Rnot_gt_ge with rorders. Qed. (**********) Lemma Rlt_not_le : forall r1 r2, r2 < r1 -> ~ r1 <= r2. Proof. generalize Rlt_asym Rlt_dichotomy_converse; unfold Rle. unfold not; intuition eauto 3. Qed. Hint Immediate Rlt_not_le: real. Lemma Rgt_not_le : forall r1 r2, r1 > r2 -> ~ r1 <= r2. Proof. exact Rlt_not_le. Qed. Lemma Rlt_not_ge : forall r1 r2, r1 < r2 -> ~ r1 >= r2. Proof. red; intros; eapply Rlt_not_le; eauto with real. Qed. Hint Immediate Rlt_not_ge: real. Lemma Rgt_not_ge : forall r1 r2, r2 > r1 -> ~ r1 >= r2. Proof. exact Rlt_not_ge. Qed. Lemma Rle_not_lt : forall r1 r2, r2 <= r1 -> ~ r1 < r2. Proof. intros r1 r2. generalize (Rlt_asym r1 r2) (Rlt_dichotomy_converse r1 r2). unfold Rle; intuition. Qed. Lemma Rge_not_lt : forall r1 r2, r1 >= r2 -> ~ r1 < r2. Proof. intros; apply Rle_not_lt; auto with real. Qed. Lemma Rle_not_gt : forall r1 r2, r1 <= r2 -> ~ r1 > r2. Proof. do 2 intro; apply Rle_not_lt. Qed. Lemma Rge_not_gt : forall r1 r2, r2 >= r1 -> ~ r1 > r2. Proof. do 2 intro; apply Rge_not_lt. Qed. (**********) Lemma Req_le : forall r1 r2, r1 = r2 -> r1 <= r2. Proof. unfold Rle; tauto. Qed. Hint Immediate Req_le: real. Lemma Req_ge : forall r1 r2, r1 = r2 -> r1 >= r2. Proof. unfold Rge; tauto. Qed. Hint Immediate Req_ge: real. Lemma Req_le_sym : forall r1 r2, r2 = r1 -> r1 <= r2. Proof. unfold Rle; auto. Qed. Hint Immediate Req_le_sym: real. Lemma Req_ge_sym : forall r1 r2, r2 = r1 -> r1 >= r2. Proof. unfold Rge; auto. Qed. Hint Immediate Req_ge_sym: real. (** *** Asymmetry *) (** Remark: [Rlt_asym] is an axiom *) Lemma Rgt_asym : forall r1 r2:R, r1 > r2 -> ~ r2 > r1. Proof. do 2 intro; apply Rlt_asym. Qed. (** *** Antisymmetry *) Lemma Rle_antisym : forall r1 r2, r1 <= r2 -> r2 <= r1 -> r1 = r2. Proof. intros r1 r2; generalize (Rlt_asym r1 r2); unfold Rle; intuition. Qed. Hint Resolve Rle_antisym: real. Lemma Rge_antisym : forall r1 r2, r1 >= r2 -> r2 >= r1 -> r1 = r2. Proof. auto with real. Qed. (**********) Lemma Rle_le_eq : forall r1 r2, r1 <= r2 /\ r2 <= r1 <-> r1 = r2. Proof. intuition. Qed. Lemma Rge_ge_eq : forall r1 r2, r1 >= r2 /\ r2 >= r1 <-> r1 = r2. Proof. intuition. Qed. (** *** Compatibility with equality *) Lemma Rlt_eq_compat : forall r1 r2 r3 r4, r1 = r2 -> r2 < r4 -> r4 = r3 -> r1 < r3. Proof. intros x x' y y'; intros; replace x with x'; replace y with y'; assumption. Qed. Lemma Rgt_eq_compat : forall r1 r2 r3 r4, r1 = r2 -> r2 > r4 -> r4 = r3 -> r1 > r3. Proof. intros; red; apply Rlt_eq_compat with (r2:=r4) (r4:=r2); auto. Qed. (** *** Transitivity *) (** Remark: [Rlt_trans] is an axiom *) Lemma Rle_trans : forall r1 r2 r3, r1 <= r2 -> r2 <= r3 -> r1 <= r3. Proof. generalize eq_trans Rlt_trans Rlt_eq_compat. unfold Rle. intuition eauto 2. Qed. Lemma Rge_trans : forall r1 r2 r3, r1 >= r2 -> r2 >= r3 -> r1 >= r3. Proof. eauto using Rle_trans with rorders. Qed. Lemma Rgt_trans : forall r1 r2 r3, r1 > r2 -> r2 > r3 -> r1 > r3. Proof. eauto using Rlt_trans with rorders. Qed. (**********) Lemma Rle_lt_trans : forall r1 r2 r3, r1 <= r2 -> r2 < r3 -> r1 < r3. Proof. generalize Rlt_trans Rlt_eq_compat. unfold Rle. intuition eauto 2. Qed. Lemma Rlt_le_trans : forall r1 r2 r3, r1 < r2 -> r2 <= r3 -> r1 < r3. Proof. generalize Rlt_trans Rlt_eq_compat; unfold Rle; intuition eauto 2. Qed. Lemma Rge_gt_trans : forall r1 r2 r3, r1 >= r2 -> r2 > r3 -> r1 > r3. Proof. eauto using Rlt_le_trans with rorders. Qed. Lemma Rgt_ge_trans : forall r1 r2 r3, r1 > r2 -> r2 >= r3 -> r1 > r3. Proof. eauto using Rle_lt_trans with rorders. Qed. (** *** (Classical) decidability *) Lemma Rlt_dec : forall r1 r2, {r1 < r2} + {~ r1 < r2}. Proof. intros; generalize (total_order_T r1 r2) (Rlt_dichotomy_converse r1 r2); intuition. Qed. Lemma Rle_dec : forall r1 r2, {r1 <= r2} + {~ r1 <= r2}. Proof. intros r1 r2. generalize (total_order_T r1 r2) (Rlt_dichotomy_converse r1 r2). intuition eauto 4 with real. Qed. Lemma Rgt_dec : forall r1 r2, {r1 > r2} + {~ r1 > r2}. Proof. do 2 intro; apply Rlt_dec. Qed. Lemma Rge_dec : forall r1 r2, {r1 >= r2} + {~ r1 >= r2}. Proof. intros; edestruct Rle_dec; [left|right]; eauto with rorders. Qed. Lemma Rlt_le_dec : forall r1 r2, {r1 < r2} + {r2 <= r1}. Proof. intros; generalize (total_order_T r1 r2); intuition. Qed. Lemma Rgt_ge_dec : forall r1 r2, {r1 > r2} + {r2 >= r1}. Proof. intros; edestruct Rlt_le_dec; [left|right]; eauto with rorders. Qed. Lemma Rle_lt_dec : forall r1 r2, {r1 <= r2} + {r2 < r1}. Proof. intros; generalize (total_order_T r1 r2); intuition. Qed. Lemma Rge_gt_dec : forall r1 r2, {r1 >= r2} + {r2 > r1}. Proof. intros; edestruct Rle_lt_dec; [left|right]; eauto with rorders. Qed. Lemma Rlt_or_le : forall r1 r2, r1 < r2 \/ r2 <= r1. Proof. intros n m; elim (Rle_lt_dec m n); auto with real. Qed. Lemma Rgt_or_ge : forall r1 r2, r1 > r2 \/ r2 >= r1. Proof. intros; edestruct Rlt_or_le; [left|right]; eauto with rorders. Qed. Lemma Rle_or_lt : forall r1 r2, r1 <= r2 \/ r2 < r1. Proof. intros n m; elim (Rlt_le_dec m n); auto with real. Qed. Lemma Rge_or_gt : forall r1 r2, r1 >= r2 \/ r2 > r1. Proof. intros; edestruct Rle_or_lt; [left|right]; eauto with rorders. Qed. Lemma Rle_lt_or_eq_dec : forall r1 r2, r1 <= r2 -> {r1 < r2} + {r1 = r2}. Proof. intros r1 r2 H; generalize (total_order_T r1 r2); intuition. Qed. (**********) Lemma inser_trans_R : forall r1 r2 r3 r4, r1 <= r2 < r3 -> {r1 <= r2 < r4} + {r4 <= r2 < r3}. Proof. intros n m p q; intros; generalize (Rlt_le_dec m q); intuition. Qed. (*********************************************************) (** ** Addition *) (*********************************************************) (** Remark: [Rplus_0_l] is an axiom *) Lemma Rplus_0_r : forall r, r + 0 = r. Proof. intro; ring. Qed. Hint Resolve Rplus_0_r: real. Lemma Rplus_ne : forall r, r + 0 = r /\ 0 + r = r. Proof. split; ring. Qed. Hint Resolve Rplus_ne: real. (**********) (** Remark: [Rplus_opp_r] is an axiom *) Lemma Rplus_opp_l : forall r, - r + r = 0. Proof. intro; ring. Qed. Hint Resolve Rplus_opp_l: real. (**********) Lemma Rplus_opp_r_uniq : forall r1 r2, r1 + r2 = 0 -> r2 = - r1. Proof. intros x y H; replace y with (- x + x + y) by ring. rewrite Rplus_assoc; rewrite H; ring. Qed. Definition f_equal_R := (f_equal (A:=R)). Hint Resolve f_equal_R : real. Lemma Rplus_eq_compat_l : forall r r1 r2, r1 = r2 -> r + r1 = r + r2. Proof. intros r r1 r2. apply f_equal. Qed. Lemma Rplus_eq_compat_r : forall r r1 r2, r1 = r2 -> r1 + r = r2 + r. Proof. intros r r1 r2. apply (f_equal (fun v => v + r)). Qed. (**********) Lemma Rplus_eq_reg_l : forall r r1 r2, r + r1 = r + r2 -> r1 = r2. Proof. intros; transitivity (- r + r + r1). ring. transitivity (- r + r + r2). repeat rewrite Rplus_assoc; rewrite <- H; reflexivity. ring. Qed. Hint Resolve Rplus_eq_reg_l: real. Lemma Rplus_eq_reg_r : forall r r1 r2, r1 + r = r2 + r -> r1 = r2. Proof. intros r r1 r2 H. apply Rplus_eq_reg_l with r. now rewrite 2!(Rplus_comm r). Qed. (**********) Lemma Rplus_0_r_uniq : forall r r1, r + r1 = r -> r1 = 0. Proof. intros r b; pattern r at 2; replace r with (r + 0); eauto with real. Qed. (***********) Lemma Rplus_eq_0_l : forall r1 r2, 0 <= r1 -> 0 <= r2 -> r1 + r2 = 0 -> r1 = 0. Proof. intros a b H [H0| H0] H1; auto with real. absurd (0 < a + b). rewrite H1; auto with real. apply Rle_lt_trans with (a + 0). rewrite Rplus_0_r; assumption. auto using Rplus_lt_compat_l with real. rewrite <- H0, Rplus_0_r in H1; assumption. Qed. Lemma Rplus_eq_R0 : forall r1 r2, 0 <= r1 -> 0 <= r2 -> r1 + r2 = 0 -> r1 = 0 /\ r2 = 0. Proof. intros a b; split. apply Rplus_eq_0_l with b; auto with real. apply Rplus_eq_0_l with a; auto with real. rewrite Rplus_comm; auto with real. Qed. (*********************************************************) (** ** Multiplication *) (*********************************************************) (**********) Lemma Rinv_r : forall r, r <> 0 -> r * / r = 1. Proof. intros; field; trivial. Qed. Hint Resolve Rinv_r: real. Lemma Rinv_l_sym : forall r, r <> 0 -> 1 = / r * r. Proof. intros; field; trivial. Qed. Hint Resolve Rinv_l_sym: real. Lemma Rinv_r_sym : forall r, r <> 0 -> 1 = r * / r. Proof. intros; field; trivial. Qed. Hint Resolve Rinv_r_sym: real. (**********) Lemma Rmult_0_r : forall r, r * 0 = 0. Proof. intro; ring. Qed. Hint Resolve Rmult_0_r: real. (**********) Lemma Rmult_0_l : forall r, 0 * r = 0. Proof. intro; ring. Qed. Hint Resolve Rmult_0_l: real. (**********) Lemma Rmult_ne : forall r, r * 1 = r /\ 1 * r = r. Proof. intro; split; ring. Qed. Hint Resolve Rmult_ne: real. (**********) Lemma Rmult_1_r : forall r, r * 1 = r. Proof. intro; ring. Qed. Hint Resolve Rmult_1_r: real. (**********) Lemma Rmult_eq_compat_l : forall r r1 r2, r1 = r2 -> r * r1 = r * r2. Proof. auto with real. Qed. Lemma Rmult_eq_compat_r : forall r r1 r2, r1 = r2 -> r1 * r = r2 * r. Proof. intros. rewrite <- 2!(Rmult_comm r). now apply Rmult_eq_compat_l. Qed. (**********) Lemma Rmult_eq_reg_l : forall r r1 r2, r * r1 = r * r2 -> r <> 0 -> r1 = r2. Proof. intros; transitivity (/ r * r * r1). field; trivial. transitivity (/ r * r * r2). repeat rewrite Rmult_assoc; rewrite H; trivial. field; trivial. Qed. Lemma Rmult_eq_reg_r : forall r r1 r2, r1 * r = r2 * r -> r <> 0 -> r1 = r2. Proof. intros. apply Rmult_eq_reg_l with (2 := H0). now rewrite 2!(Rmult_comm r). Qed. (**********) Lemma Rmult_integral : forall r1 r2, r1 * r2 = 0 -> r1 = 0 \/ r2 = 0. Proof. intros; case (Req_dec r1 0); [ intro Hz | intro Hnotz ]. auto. right; apply Rmult_eq_reg_l with r1; trivial. rewrite H; auto with real. Qed. (**********) Lemma Rmult_eq_0_compat : forall r1 r2, r1 = 0 \/ r2 = 0 -> r1 * r2 = 0. Proof. intros r1 r2 [H| H]; rewrite H; auto with real. Qed. Hint Resolve Rmult_eq_0_compat: real. (**********) Lemma Rmult_eq_0_compat_r : forall r1 r2, r1 = 0 -> r1 * r2 = 0. Proof. auto with real. Qed. (**********) Lemma Rmult_eq_0_compat_l : forall r1 r2, r2 = 0 -> r1 * r2 = 0. Proof. auto with real. Qed. (**********) Lemma Rmult_neq_0_reg : forall r1 r2, r1 * r2 <> 0 -> r1 <> 0 /\ r2 <> 0. Proof. intros r1 r2 H; split; red; intro; apply H; auto with real. Qed. (**********) Lemma Rmult_integral_contrapositive : forall r1 r2, r1 <> 0 /\ r2 <> 0 -> r1 * r2 <> 0. Proof. red; intros r1 r2 [H1 H2] H. case (Rmult_integral r1 r2); auto with real. Qed. Hint Resolve Rmult_integral_contrapositive: real. Lemma Rmult_integral_contrapositive_currified : forall r1 r2, r1 <> 0 -> r2 <> 0 -> r1 * r2 <> 0. Proof. auto using Rmult_integral_contrapositive. Qed. (**********) Lemma Rmult_plus_distr_r : forall r1 r2 r3, (r1 + r2) * r3 = r1 * r3 + r2 * r3. Proof. intros; ring. Qed. (*********************************************************) (** ** Square function *) (*********************************************************) (***********) Definition Rsqr r : R := r * r. Notation "r ²" := (Rsqr r) (at level 1, format "r ²") : R_scope. (***********) Lemma Rsqr_0 : Rsqr 0 = 0. unfold Rsqr; auto with real. Qed. (***********) Lemma Rsqr_0_uniq : forall r, Rsqr r = 0 -> r = 0. unfold Rsqr; intros; elim (Rmult_integral r r H); trivial. Qed. (*********************************************************) (** ** Opposite *) (*********************************************************) (**********) Lemma Ropp_eq_compat : forall r1 r2, r1 = r2 -> - r1 = - r2. Proof. auto with real. Qed. Hint Resolve Ropp_eq_compat: real. (**********) Lemma Ropp_0 : -0 = 0. Proof. ring. Qed. Hint Resolve Ropp_0: real. (**********) Lemma Ropp_eq_0_compat : forall r, r = 0 -> - r = 0. Proof. intros; rewrite H; auto with real. Qed. Hint Resolve Ropp_eq_0_compat: real. (**********) Lemma Ropp_involutive : forall r, - - r = r. Proof. intro; ring. Qed. Hint Resolve Ropp_involutive: real. (*********) Lemma Ropp_neq_0_compat : forall r, r <> 0 -> - r <> 0. Proof. red; intros r H H0. apply H. transitivity (- - r); auto with real. Qed. Hint Resolve Ropp_neq_0_compat: real. (**********) Lemma Ropp_plus_distr : forall r1 r2, - (r1 + r2) = - r1 + - r2. Proof. intros; ring. Qed. Hint Resolve Ropp_plus_distr: real. (*********************************************************) (** ** Opposite and multiplication *) (*********************************************************) Lemma Ropp_mult_distr_l : forall r1 r2, - (r1 * r2) = - r1 * r2. Proof. intros; ring. Qed. Lemma Ropp_mult_distr_l_reverse : forall r1 r2, - r1 * r2 = - (r1 * r2). Proof. intros; ring. Qed. Hint Resolve Ropp_mult_distr_l_reverse: real. (**********) Lemma Rmult_opp_opp : forall r1 r2, - r1 * - r2 = r1 * r2. Proof. intros; ring. Qed. Hint Resolve Rmult_opp_opp: real. Lemma Ropp_mult_distr_r : forall r1 r2, - (r1 * r2) = r1 * - r2. Proof. intros; ring. Qed. Lemma Ropp_mult_distr_r_reverse : forall r1 r2, r1 * - r2 = - (r1 * r2). Proof. intros; ring. Qed. (*********************************************************) (** ** Subtraction *) (*********************************************************) Lemma Rminus_0_r : forall r, r - 0 = r. Proof. intro; ring. Qed. Hint Resolve Rminus_0_r: real. Lemma Rminus_0_l : forall r, 0 - r = - r. Proof. intro; ring. Qed. Hint Resolve Rminus_0_l: real. (**********) Lemma Ropp_minus_distr : forall r1 r2, - (r1 - r2) = r2 - r1. Proof. intros; ring. Qed. Hint Resolve Ropp_minus_distr: real. Lemma Ropp_minus_distr' : forall r1 r2, - (r2 - r1) = r1 - r2. Proof. intros; ring. Qed. (**********) Lemma Rminus_diag_eq : forall r1 r2, r1 = r2 -> r1 - r2 = 0. Proof. intros; rewrite H; ring. Qed. Hint Resolve Rminus_diag_eq: real. (**********) Lemma Rminus_diag_uniq : forall r1 r2, r1 - r2 = 0 -> r1 = r2. Proof. intros r1 r2; unfold Rminus; rewrite Rplus_comm; intro. rewrite <- (Ropp_involutive r2); apply (Rplus_opp_r_uniq (- r2) r1 H). Qed. Hint Immediate Rminus_diag_uniq: real. Lemma Rminus_diag_uniq_sym : forall r1 r2, r2 - r1 = 0 -> r1 = r2. Proof. intros; generalize (Rminus_diag_uniq r2 r1 H); clear H; intro H; rewrite H; ring. Qed. Hint Immediate Rminus_diag_uniq_sym: real. Lemma Rplus_minus : forall r1 r2, r1 + (r2 - r1) = r2. Proof. intros; ring. Qed. Hint Resolve Rplus_minus: real. (**********) Lemma Rminus_eq_contra : forall r1 r2, r1 <> r2 -> r1 - r2 <> 0. Proof. red; intros r1 r2 H H0. apply H; auto with real. Qed. Hint Resolve Rminus_eq_contra: real. Lemma Rminus_not_eq : forall r1 r2, r1 - r2 <> 0 -> r1 <> r2. Proof. red; intros; elim H; apply Rminus_diag_eq; auto. Qed. Hint Resolve Rminus_not_eq: real. Lemma Rminus_not_eq_right : forall r1 r2, r2 - r1 <> 0 -> r1 <> r2. Proof. red; intros; elim H; rewrite H0; ring. Qed. Hint Resolve Rminus_not_eq_right: real. (**********) Lemma Rmult_minus_distr_l : forall r1 r2 r3, r1 * (r2 - r3) = r1 * r2 - r1 * r3. Proof. intros; ring. Qed. (*********************************************************) (** ** Inverse *) (*********************************************************) Lemma Rinv_1 : / 1 = 1. Proof. field. Qed. Hint Resolve Rinv_1: real. (*********) Lemma Rinv_neq_0_compat : forall r, r <> 0 -> / r <> 0. Proof. red; intros; apply R1_neq_R0. replace 1 with (/ r * r); auto with real. Qed. Hint Resolve Rinv_neq_0_compat: real. (*********) Lemma Rinv_involutive : forall r, r <> 0 -> / / r = r. Proof. intros; field; trivial. Qed. Hint Resolve Rinv_involutive: real. (*********) Lemma Rinv_mult_distr : forall r1 r2, r1 <> 0 -> r2 <> 0 -> / (r1 * r2) = / r1 * / r2. Proof. intros; field; auto. Qed. (*********) Lemma Ropp_inv_permute : forall r, r <> 0 -> - / r = / - r. Proof. intros; field; trivial. Qed. Lemma Rinv_r_simpl_r : forall r1 r2, r1 <> 0 -> r1 * / r1 * r2 = r2. Proof. intros; transitivity (1 * r2); auto with real. rewrite Rinv_r; auto with real. Qed. Lemma Rinv_r_simpl_l : forall r1 r2, r1 <> 0 -> r2 * r1 * / r1 = r2. Proof. intros; transitivity (r2 * 1); auto with real. transitivity (r2 * (r1 * / r1)); auto with real. Qed. Lemma Rinv_r_simpl_m : forall r1 r2, r1 <> 0 -> r1 * r2 * / r1 = r2. Proof. intros; transitivity (r2 * 1); auto with real. transitivity (r2 * (r1 * / r1)); auto with real. ring. Qed. Hint Resolve Rinv_r_simpl_l Rinv_r_simpl_r Rinv_r_simpl_m: real. (*********) Lemma Rinv_mult_simpl : forall r1 r2 r3, r1 <> 0 -> r1 * / r2 * (r3 * / r1) = r3 * / r2. Proof. intros a b c; intros. transitivity (a * / a * (c * / b)); auto with real. ring. Qed. (*********************************************************) (** ** Order and addition *) (*********************************************************) (** *** Compatibility *) (** Remark: [Rplus_lt_compat_l] is an axiom *) Lemma Rplus_gt_compat_l : forall r r1 r2, r1 > r2 -> r + r1 > r + r2. Proof. eauto using Rplus_lt_compat_l with rorders. Qed. Hint Resolve Rplus_gt_compat_l: real. (**********) Lemma Rplus_lt_compat_r : forall r r1 r2, r1 < r2 -> r1 + r < r2 + r. Proof. intros. rewrite (Rplus_comm r1 r); rewrite (Rplus_comm r2 r); auto with real. Qed. Hint Resolve Rplus_lt_compat_r: real. Lemma Rplus_gt_compat_r : forall r r1 r2, r1 > r2 -> r1 + r > r2 + r. Proof. do 3 intro; apply Rplus_lt_compat_r. Qed. (**********) Lemma Rplus_le_compat_l : forall r r1 r2, r1 <= r2 -> r + r1 <= r + r2. Proof. unfold Rle; intros; elim H; intro. left; apply (Rplus_lt_compat_l r r1 r2 H0). right; rewrite <- H0; auto with zarith real. Qed. Lemma Rplus_ge_compat_l : forall r r1 r2, r1 >= r2 -> r + r1 >= r + r2. Proof. auto using Rplus_le_compat_l with rorders. Qed. Hint Resolve Rplus_ge_compat_l: real. (**********) Lemma Rplus_le_compat_r : forall r r1 r2, r1 <= r2 -> r1 + r <= r2 + r. Proof. unfold Rle; intros; elim H; intro. left; apply (Rplus_lt_compat_r r r1 r2 H0). right; rewrite <- H0; auto with real. Qed. Hint Resolve Rplus_le_compat_l Rplus_le_compat_r: real. Lemma Rplus_ge_compat_r : forall r r1 r2, r1 >= r2 -> r1 + r >= r2 + r. Proof. auto using Rplus_le_compat_r with rorders. Qed. (*********) Lemma Rplus_lt_compat : forall r1 r2 r3 r4, r1 < r2 -> r3 < r4 -> r1 + r3 < r2 + r4. Proof. intros; apply Rlt_trans with (r2 + r3); auto with real. Qed. Hint Immediate Rplus_lt_compat: real. Lemma Rplus_le_compat : forall r1 r2 r3 r4, r1 <= r2 -> r3 <= r4 -> r1 + r3 <= r2 + r4. Proof. intros; apply Rle_trans with (r2 + r3); auto with real. Qed. Hint Immediate Rplus_le_compat: real. Lemma Rplus_gt_compat : forall r1 r2 r3 r4, r1 > r2 -> r3 > r4 -> r1 + r3 > r2 + r4. Proof. auto using Rplus_lt_compat with rorders. Qed. Lemma Rplus_ge_compat : forall r1 r2 r3 r4, r1 >= r2 -> r3 >= r4 -> r1 + r3 >= r2 + r4. Proof. auto using Rplus_le_compat with rorders. Qed. (*********) Lemma Rplus_lt_le_compat : forall r1 r2 r3 r4, r1 < r2 -> r3 <= r4 -> r1 + r3 < r2 + r4. Proof. intros; apply Rlt_le_trans with (r2 + r3); auto with real. Qed. Lemma Rplus_le_lt_compat : forall r1 r2 r3 r4, r1 <= r2 -> r3 < r4 -> r1 + r3 < r2 + r4. Proof. intros; apply Rle_lt_trans with (r2 + r3); auto with real. Qed. Hint Immediate Rplus_lt_le_compat Rplus_le_lt_compat: real. Lemma Rplus_gt_ge_compat : forall r1 r2 r3 r4, r1 > r2 -> r3 >= r4 -> r1 + r3 > r2 + r4. Proof. auto using Rplus_lt_le_compat with rorders. Qed. Lemma Rplus_ge_gt_compat : forall r1 r2 r3 r4, r1 >= r2 -> r3 > r4 -> r1 + r3 > r2 + r4. Proof. auto using Rplus_le_lt_compat with rorders. Qed. (**********) Lemma Rplus_lt_0_compat : forall r1 r2, 0 < r1 -> 0 < r2 -> 0 < r1 + r2. Proof. intros x y; intros; apply Rlt_trans with x; [ assumption | pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_lt_compat_l; assumption ]. Qed. Lemma Rplus_le_lt_0_compat : forall r1 r2, 0 <= r1 -> 0 < r2 -> 0 < r1 + r2. Proof. intros x y; intros; apply Rle_lt_trans with x; [ assumption | pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_lt_compat_l; assumption ]. Qed. Lemma Rplus_lt_le_0_compat : forall r1 r2, 0 < r1 -> 0 <= r2 -> 0 < r1 + r2. Proof. intros x y; intros; rewrite <- Rplus_comm; apply Rplus_le_lt_0_compat; assumption. Qed. Lemma Rplus_le_le_0_compat : forall r1 r2, 0 <= r1 -> 0 <= r2 -> 0 <= r1 + r2. Proof. intros x y; intros; apply Rle_trans with x; [ assumption | pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l; assumption ]. Qed. (**********) Lemma sum_inequa_Rle_lt : forall a x b c y d:R, a <= x -> x < b -> c < y -> y <= d -> a + c < x + y < b + d. Proof. intros; split. apply Rlt_le_trans with (a + y); auto with real. apply Rlt_le_trans with (b + y); auto with real. Qed. (** *** Cancellation *) Lemma Rplus_lt_reg_l : forall r r1 r2, r + r1 < r + r2 -> r1 < r2. Proof. intros; cut (- r + r + r1 < - r + r + r2). rewrite Rplus_opp_l. elim (Rplus_ne r1); elim (Rplus_ne r2); intros; rewrite <- H3; rewrite <- H1; auto with zarith real. rewrite Rplus_assoc; rewrite Rplus_assoc; apply (Rplus_lt_compat_l (- r) (r + r1) (r + r2) H). Qed. Lemma Rplus_lt_reg_r : forall r r1 r2, r1 + r < r2 + r -> r1 < r2. Proof. intros. apply (Rplus_lt_reg_l r). now rewrite 2!(Rplus_comm r). Qed. Lemma Rplus_le_reg_l : forall r r1 r2, r + r1 <= r + r2 -> r1 <= r2. Proof. unfold Rle; intros; elim H; intro. left; apply (Rplus_lt_reg_l r r1 r2 H0). right; apply (Rplus_eq_reg_l r r1 r2 H0). Qed. Lemma Rplus_le_reg_r : forall r r1 r2, r1 + r <= r2 + r -> r1 <= r2. Proof. intros. apply (Rplus_le_reg_l r). now rewrite 2!(Rplus_comm r). Qed. Lemma Rplus_gt_reg_l : forall r r1 r2, r + r1 > r + r2 -> r1 > r2. Proof. unfold Rgt; intros; apply (Rplus_lt_reg_l r r2 r1 H). Qed. Lemma Rplus_ge_reg_l : forall r r1 r2, r + r1 >= r + r2 -> r1 >= r2. Proof. intros; apply Rle_ge; apply Rplus_le_reg_l with r; auto with real. Qed. (**********) Lemma Rplus_le_reg_pos_r : forall r1 r2 r3, 0 <= r2 -> r1 + r2 <= r3 -> r1 <= r3. Proof. intros x y z; intros; apply Rle_trans with (x + y); [ pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l; assumption | assumption ]. Qed. Lemma Rplus_lt_reg_pos_r : forall r1 r2 r3, 0 <= r2 -> r1 + r2 < r3 -> r1 < r3. Proof. intros x y z; intros; apply Rle_lt_trans with (x + y); [ pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l; assumption | assumption ]. Qed. Lemma Rplus_ge_reg_neg_r : forall r1 r2 r3, 0 >= r2 -> r1 + r2 >= r3 -> r1 >= r3. Proof. intros x y z; intros; apply Rge_trans with (x + y); [ pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_ge_compat_l; assumption | assumption ]. Qed. Lemma Rplus_gt_reg_neg_r : forall r1 r2 r3, 0 >= r2 -> r1 + r2 > r3 -> r1 > r3. Proof. intros x y z; intros; apply Rge_gt_trans with (x + y); [ pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_ge_compat_l; assumption | assumption ]. Qed. (*********************************************************) (** ** Order and opposite *) (*********************************************************) (** *** Contravariant compatibility *) Lemma Ropp_gt_lt_contravar : forall r1 r2, r1 > r2 -> - r1 < - r2. Proof. unfold Rgt; intros. apply (Rplus_lt_reg_l (r2 + r1)). replace (r2 + r1 + - r1) with r2 by ring. replace (r2 + r1 + - r2) with r1 by ring. exact H. Qed. Hint Resolve Ropp_gt_lt_contravar. Lemma Ropp_lt_gt_contravar : forall r1 r2, r1 < r2 -> - r1 > - r2. Proof. unfold Rgt; auto with real. Qed. Hint Resolve Ropp_lt_gt_contravar: real. (**********) Lemma Ropp_lt_contravar : forall r1 r2, r2 < r1 -> - r1 < - r2. Proof. auto with real. Qed. Hint Resolve Ropp_lt_contravar: real. Lemma Ropp_gt_contravar : forall r1 r2, r2 > r1 -> - r1 > - r2. Proof. auto with real. Qed. (**********) Lemma Ropp_le_ge_contravar : forall r1 r2, r1 <= r2 -> - r1 >= - r2. Proof. unfold Rge; intros r1 r2 [H| H]; auto with real. Qed. Hint Resolve Ropp_le_ge_contravar: real. Lemma Ropp_ge_le_contravar : forall r1 r2, r1 >= r2 -> - r1 <= - r2. Proof. unfold Rle; intros r1 r2 [H| H]; auto with real. Qed. Hint Resolve Ropp_ge_le_contravar: real. (**********) Lemma Ropp_le_contravar : forall r1 r2, r2 <= r1 -> - r1 <= - r2. Proof. intros r1 r2 H; elim H; auto with real. Qed. Hint Resolve Ropp_le_contravar: real. Lemma Ropp_ge_contravar : forall r1 r2, r2 >= r1 -> - r1 >= - r2. Proof. auto using Ropp_le_contravar with real. Qed. (**********) Lemma Ropp_0_lt_gt_contravar : forall r, 0 < r -> 0 > - r. Proof. intros; replace 0 with (-0); auto with real. Qed. Hint Resolve Ropp_0_lt_gt_contravar: real. Lemma Ropp_0_gt_lt_contravar : forall r, 0 > r -> 0 < - r. Proof. intros; replace 0 with (-0); auto with real. Qed. Hint Resolve Ropp_0_gt_lt_contravar: real. (**********) Lemma Ropp_lt_gt_0_contravar : forall r, r > 0 -> - r < 0. Proof. intros; rewrite <- Ropp_0; auto with real. Qed. Hint Resolve Ropp_lt_gt_0_contravar: real. Lemma Ropp_gt_lt_0_contravar : forall r, r < 0 -> - r > 0. Proof. intros; rewrite <- Ropp_0; auto with real. Qed. Hint Resolve Ropp_gt_lt_0_contravar: real. (**********) Lemma Ropp_0_le_ge_contravar : forall r, 0 <= r -> 0 >= - r. Proof. intros; replace 0 with (-0); auto with real. Qed. Hint Resolve Ropp_0_le_ge_contravar: real. Lemma Ropp_0_ge_le_contravar : forall r, 0 >= r -> 0 <= - r. Proof. intros; replace 0 with (-0); auto with real. Qed. Hint Resolve Ropp_0_ge_le_contravar: real. (** *** Cancellation *) Lemma Ropp_lt_cancel : forall r1 r2, - r2 < - r1 -> r1 < r2. Proof. intros x y H'. rewrite <- (Ropp_involutive x); rewrite <- (Ropp_involutive y); auto with real. Qed. Hint Immediate Ropp_lt_cancel: real. Lemma Ropp_gt_cancel : forall r1 r2, - r2 > - r1 -> r1 > r2. Proof. auto using Ropp_lt_cancel with rorders. Qed. Lemma Ropp_le_cancel : forall r1 r2, - r2 <= - r1 -> r1 <= r2. Proof. intros x y H. elim H; auto with real. intro H1; rewrite <- (Ropp_involutive x); rewrite <- (Ropp_involutive y); rewrite H1; auto with real. Qed. Hint Immediate Ropp_le_cancel: real. Lemma Ropp_ge_cancel : forall r1 r2, - r2 >= - r1 -> r1 >= r2. Proof. auto using Ropp_le_cancel with rorders. Qed. (*********************************************************) (** ** Order and multiplication *) (*********************************************************) (** Remark: [Rmult_lt_compat_l] is an axiom *) (** *** Covariant compatibility *) Lemma Rmult_lt_compat_r : forall r r1 r2, 0 < r -> r1 < r2 -> r1 * r < r2 * r. Proof. intros; rewrite (Rmult_comm r1 r); rewrite (Rmult_comm r2 r); auto with real. Qed. Hint Resolve Rmult_lt_compat_r. Lemma Rmult_gt_compat_r : forall r r1 r2, r > 0 -> r1 > r2 -> r1 * r > r2 * r. Proof. eauto using Rmult_lt_compat_r with rorders. Qed. Lemma Rmult_gt_compat_l : forall r r1 r2, r > 0 -> r1 > r2 -> r * r1 > r * r2. Proof. eauto using Rmult_lt_compat_l with rorders. Qed. (**********) Lemma Rmult_le_compat_l : forall r r1 r2, 0 <= r -> r1 <= r2 -> r * r1 <= r * r2. Proof. intros r r1 r2 H H0; destruct H; destruct H0; unfold Rle; auto with real. right; rewrite <- H; do 2 rewrite Rmult_0_l; reflexivity. Qed. Hint Resolve Rmult_le_compat_l: real. Lemma Rmult_le_compat_r : forall r r1 r2, 0 <= r -> r1 <= r2 -> r1 * r <= r2 * r. Proof. intros r r1 r2 H; rewrite (Rmult_comm r1 r); rewrite (Rmult_comm r2 r); auto with real. Qed. Hint Resolve Rmult_le_compat_r: real. Lemma Rmult_ge_compat_l : forall r r1 r2, r >= 0 -> r1 >= r2 -> r * r1 >= r * r2. Proof. eauto using Rmult_le_compat_l with rorders. Qed. Lemma Rmult_ge_compat_r : forall r r1 r2, r >= 0 -> r1 >= r2 -> r1 * r >= r2 * r. Proof. eauto using Rmult_le_compat_r with rorders. Qed. (**********) Lemma Rmult_le_compat : forall r1 r2 r3 r4, 0 <= r1 -> 0 <= r3 -> r1 <= r2 -> r3 <= r4 -> r1 * r3 <= r2 * r4. Proof. intros x y z t H' H'0 H'1 H'2. apply Rle_trans with (r2 := x * t); auto with real. repeat rewrite (fun x => Rmult_comm x t). apply Rmult_le_compat_l; auto. apply Rle_trans with z; auto. Qed. Hint Resolve Rmult_le_compat: real. Lemma Rmult_ge_compat : forall r1 r2 r3 r4, r2 >= 0 -> r4 >= 0 -> r1 >= r2 -> r3 >= r4 -> r1 * r3 >= r2 * r4. Proof. auto with real rorders. Qed. Lemma Rmult_gt_0_lt_compat : forall r1 r2 r3 r4, r3 > 0 -> r2 > 0 -> r1 < r2 -> r3 < r4 -> r1 * r3 < r2 * r4. Proof. intros; apply Rlt_trans with (r2 * r3); auto with real. Qed. (*********) Lemma Rmult_le_0_lt_compat : forall r1 r2 r3 r4, 0 <= r1 -> 0 <= r3 -> r1 < r2 -> r3 < r4 -> r1 * r3 < r2 * r4. Proof. intros; apply Rle_lt_trans with (r2 * r3); [ apply Rmult_le_compat_r; [ assumption | left; assumption ] | apply Rmult_lt_compat_l; [ apply Rle_lt_trans with r1; assumption | assumption ] ]. Qed. (*********) Lemma Rmult_lt_0_compat : forall r1 r2, 0 < r1 -> 0 < r2 -> 0 < r1 * r2. Proof. intros; replace 0 with (0 * r2); auto with real. Qed. Lemma Rmult_gt_0_compat : forall r1 r2, r1 > 0 -> r2 > 0 -> r1 * r2 > 0. Proof Rmult_lt_0_compat. (** *** Contravariant compatibility *) Lemma Rmult_le_compat_neg_l : forall r r1 r2, r <= 0 -> r1 <= r2 -> r * r2 <= r * r1. Proof. intros; replace r with (- - r); auto with real. do 2 rewrite (Ropp_mult_distr_l_reverse (- r)). apply Ropp_le_contravar; auto with real. Qed. Hint Resolve Rmult_le_compat_neg_l: real. Lemma Rmult_le_ge_compat_neg_l : forall r r1 r2, r <= 0 -> r1 <= r2 -> r * r1 >= r * r2. Proof. intros; apply Rle_ge; auto with real. Qed. Hint Resolve Rmult_le_ge_compat_neg_l: real. Lemma Rmult_lt_gt_compat_neg_l : forall r r1 r2, r < 0 -> r1 < r2 -> r * r1 > r * r2. Proof. intros; replace r with (- - r); auto with real. rewrite (Ropp_mult_distr_l_reverse (- r)); rewrite (Ropp_mult_distr_l_reverse (- r)). apply Ropp_lt_gt_contravar; auto with real. Qed. (** *** Cancellation *) Lemma Rmult_lt_reg_l : forall r r1 r2, 0 < r -> r * r1 < r * r2 -> r1 < r2. Proof. intros z x y H H0. case (Rtotal_order x y); intros Eq0; auto; elim Eq0; clear Eq0; intros Eq0. rewrite Eq0 in H0; exfalso; apply (Rlt_irrefl (z * y)); auto. generalize (Rmult_lt_compat_l z y x H Eq0); intro; exfalso; generalize (Rlt_trans (z * x) (z * y) (z * x) H0 H1); intro; apply (Rlt_irrefl (z * x)); auto. Qed. Lemma Rmult_lt_reg_r : forall r r1 r2 : R, 0 < r -> r1 * r < r2 * r -> r1 < r2. Proof. intros. apply Rmult_lt_reg_l with r. exact H. now rewrite 2!(Rmult_comm r). Qed. Lemma Rmult_gt_reg_l : forall r r1 r2, 0 < r -> r * r1 < r * r2 -> r1 < r2. Proof. eauto using Rmult_lt_reg_l with rorders. Qed. Lemma Rmult_le_reg_l : forall r r1 r2, 0 < r -> r * r1 <= r * r2 -> r1 <= r2. Proof. intros z x y H H0; case H0; auto with real. intros H1; apply Rlt_le. apply Rmult_lt_reg_l with (r := z); auto. intros H1; replace x with (/ z * (z * x)); auto with real. replace y with (/ z * (z * y)). rewrite H1; auto with real. rewrite <- Rmult_assoc; rewrite Rinv_l; auto with real. rewrite <- Rmult_assoc; rewrite Rinv_l; auto with real. Qed. Lemma Rmult_le_reg_r : forall r r1 r2, 0 < r -> r1 * r <= r2 * r -> r1 <= r2. Proof. intros. apply Rmult_le_reg_l with r. exact H. now rewrite 2!(Rmult_comm r). Qed. (*********************************************************) (** ** Order and substraction *) (*********************************************************) Lemma Rlt_minus : forall r1 r2, r1 < r2 -> r1 - r2 < 0. Proof. intros; apply (Rplus_lt_reg_l r2). replace (r2 + (r1 - r2)) with r1 by ring. now rewrite Rplus_0_r. Qed. Hint Resolve Rlt_minus: real. Lemma Rgt_minus : forall r1 r2, r1 > r2 -> r1 - r2 > 0. Proof. intros; apply (Rplus_lt_reg_l r2). replace (r2 + (r1 - r2)) with r1 by ring. now rewrite Rplus_0_r. Qed. Lemma Rlt_Rminus : forall a b:R, a < b -> 0 < b - a. Proof. intros a b; apply Rgt_minus. Qed. (**********) Lemma Rle_minus : forall r1 r2, r1 <= r2 -> r1 - r2 <= 0. Proof. destruct 1; unfold Rle; auto with real. Qed. Lemma Rge_minus : forall r1 r2, r1 >= r2 -> r1 - r2 >= 0. Proof. destruct 1. auto using Rgt_minus, Rgt_ge. right; auto using Rminus_diag_eq with rorders. Qed. (**********) Lemma Rminus_lt : forall r1 r2, r1 - r2 < 0 -> r1 < r2. Proof. intros; replace r1 with (r1 - r2 + r2). pattern r2 at 3; replace r2 with (0 + r2); auto with real. ring. Qed. Lemma Rminus_gt : forall r1 r2, r1 - r2 > 0 -> r1 > r2. Proof. intros; replace r2 with (0 + r2); auto with real. replace r1 with (r1 - r2 + r2). apply Rplus_gt_compat_r; assumption. ring. Qed. Lemma Rminus_gt_0_lt : forall a b, 0 < b - a -> a < b. Proof. intro; intro; apply Rminus_gt. Qed. (**********) Lemma Rminus_le : forall r1 r2, r1 - r2 <= 0 -> r1 <= r2. Proof. intros; replace r1 with (r1 - r2 + r2). pattern r2 at 3; replace r2 with (0 + r2); auto with real. ring. Qed. Lemma Rminus_ge : forall r1 r2, r1 - r2 >= 0 -> r1 >= r2. Proof. intros; replace r2 with (0 + r2); auto with real. replace r1 with (r1 - r2 + r2). apply Rplus_ge_compat_r; assumption. ring. Qed. (**********) Lemma tech_Rplus : forall r (s:R), 0 <= r -> 0 < s -> r + s <> 0. Proof. intros; apply not_eq_sym; apply Rlt_not_eq. rewrite Rplus_comm; replace 0 with (0 + 0); auto with real. Qed. Hint Immediate tech_Rplus: real. (*********************************************************) (** ** Order and square function *) (*********************************************************) Lemma Rle_0_sqr : forall r, 0 <= Rsqr r. Proof. intro; case (Rlt_le_dec r 0); unfold Rsqr; intro. replace (r * r) with (- r * - r); auto with real. replace 0 with (- r * 0); auto with real. replace 0 with (0 * r); auto with real. Qed. (***********) Lemma Rlt_0_sqr : forall r, r <> 0 -> 0 < Rsqr r. Proof. intros; case (Rdichotomy r 0); trivial; unfold Rsqr; intro. replace (r * r) with (- r * - r); auto with real. replace 0 with (- r * 0); auto with real. replace 0 with (0 * r); auto with real. Qed. Hint Resolve Rle_0_sqr Rlt_0_sqr: real. (***********) Lemma Rplus_sqr_eq_0_l : forall r1 r2, Rsqr r1 + Rsqr r2 = 0 -> r1 = 0. Proof. intros a b; intros; apply Rsqr_0_uniq; apply Rplus_eq_0_l with (Rsqr b); auto with real. Qed. Lemma Rplus_sqr_eq_0 : forall r1 r2, Rsqr r1 + Rsqr r2 = 0 -> r1 = 0 /\ r2 = 0. Proof. intros a b; split. apply Rplus_sqr_eq_0_l with b; auto with real. apply Rplus_sqr_eq_0_l with a; auto with real. rewrite Rplus_comm; auto with real. Qed. (*********************************************************) (** ** Zero is less than one *) (*********************************************************) Lemma Rlt_0_1 : 0 < 1. Proof. replace 1 with (Rsqr 1); auto with real. unfold Rsqr; auto with real. Qed. Hint Resolve Rlt_0_1: real. Lemma Rle_0_1 : 0 <= 1. Proof. left. exact Rlt_0_1. Qed. (*********************************************************) (** ** Order and inverse *) (*********************************************************) Lemma Rinv_0_lt_compat : forall r, 0 < r -> 0 < / r. Proof. intros; apply Rnot_le_lt; red; intros. absurd (1 <= 0); auto with real. replace 1 with (r * / r); auto with real. replace 0 with (r * 0); auto with real. Qed. Hint Resolve Rinv_0_lt_compat: real. (*********) Lemma Rinv_lt_0_compat : forall r, r < 0 -> / r < 0. Proof. intros; apply Rnot_le_lt; red; intros. absurd (1 <= 0); auto with real. replace 1 with (r * / r); auto with real. replace 0 with (r * 0); auto with real. Qed. Hint Resolve Rinv_lt_0_compat: real. (*********) Lemma Rinv_lt_contravar : forall r1 r2, 0 < r1 * r2 -> r1 < r2 -> / r2 < / r1. Proof. intros; apply Rmult_lt_reg_l with (r1 * r2); auto with real. case (Rmult_neq_0_reg r1 r2); intros; auto with real. replace (r1 * r2 * / r2) with r1. replace (r1 * r2 * / r1) with r2; trivial. symmetry ; auto with real. symmetry ; auto with real. Qed. Lemma Rinv_1_lt_contravar : forall r1 r2, 1 <= r1 -> r1 < r2 -> / r2 < / r1. Proof. intros x y H' H'0. cut (0 < x); [ intros Lt0 | apply Rlt_le_trans with (r2 := 1) ]; auto with real. apply Rmult_lt_reg_l with (r := x); auto with real. rewrite (Rmult_comm x (/ x)); rewrite Rinv_l; auto with real. apply Rmult_lt_reg_l with (r := y); auto with real. apply Rlt_trans with (r2 := x); auto. cut (y * (x * / y) = x). intro H1; rewrite H1; rewrite (Rmult_1_r y); auto. rewrite (Rmult_comm x); rewrite <- Rmult_assoc; rewrite (Rmult_comm y (/ y)); rewrite Rinv_l; auto with real. apply Rlt_dichotomy_converse; right. red; apply Rlt_trans with (r2 := x); auto with real. Qed. Hint Resolve Rinv_1_lt_contravar: real. (*********************************************************) (** ** Miscellaneous *) (*********************************************************) (**********) Lemma Rle_lt_0_plus_1 : forall r, 0 <= r -> 0 < r + 1. Proof. intros. apply Rlt_le_trans with 1; auto with real. pattern 1 at 1; replace 1 with (0 + 1); auto with real. Qed. Hint Resolve Rle_lt_0_plus_1: real. (**********) Lemma Rlt_plus_1 : forall r, r < r + 1. Proof. intros. pattern r at 1; replace r with (r + 0); auto with real. Qed. Hint Resolve Rlt_plus_1: real. (**********) Lemma tech_Rgt_minus : forall r1 r2, 0 < r2 -> r1 > r1 - r2. Proof. red; unfold Rminus; intros. pattern r1 at 2; replace r1 with (r1 + 0); auto with real. Qed. (*********************************************************) (** ** Injection from [N] to [R] *) (*********************************************************) (**********) Lemma S_INR : forall n:nat, INR (S n) = INR n + 1. Proof. intro; case n; auto with real. Qed. (**********) Lemma S_O_plus_INR : forall n:nat, INR (1 + n) = INR 1 + INR n. Proof. intro; simpl; case n; intros; auto with real. Qed. (**********) Lemma plus_INR : forall n m:nat, INR (n + m) = INR n + INR m. Proof. intros n m; induction n as [| n Hrecn]. simpl; auto with real. replace (S n + m)%nat with (S (n + m)); auto with arith. repeat rewrite S_INR. rewrite Hrecn; ring. Qed. Hint Resolve plus_INR: real. (**********) Lemma minus_INR : forall n m:nat, (m <= n)%nat -> INR (n - m) = INR n - INR m. Proof. intros n m le; pattern m, n; apply le_elim_rel; auto with real. intros; rewrite <- minus_n_O; auto with real. intros; repeat rewrite S_INR; simpl. rewrite H0; ring. Qed. Hint Resolve minus_INR: real. (*********) Lemma mult_INR : forall n m:nat, INR (n * m) = INR n * INR m. Proof. intros n m; induction n as [| n Hrecn]. simpl; auto with real. intros; repeat rewrite S_INR; simpl. rewrite plus_INR; rewrite Hrecn; ring. Qed. Hint Resolve mult_INR: real. Lemma pow_INR (m n: nat) : INR (m ^ n) = pow (INR m) n. Proof. now induction n as [|n IHn];[ | simpl; rewrite mult_INR, IHn]. Qed. (*********) Lemma lt_0_INR : forall n:nat, (0 < n)%nat -> 0 < INR n. Proof. simple induction 1; intros; auto with real. rewrite S_INR; auto with real. Qed. Hint Resolve lt_0_INR: real. Lemma lt_INR : forall n m:nat, (n < m)%nat -> INR n < INR m. Proof. simple induction 1; intros; auto with real. rewrite S_INR; auto with real. rewrite S_INR; apply Rlt_trans with (INR m0); auto with real. Qed. Hint Resolve lt_INR: real. Lemma lt_1_INR : forall n:nat, (1 < n)%nat -> 1 < INR n. Proof. apply lt_INR. Qed. Hint Resolve lt_1_INR: real. (**********) Lemma pos_INR_nat_of_P : forall p:positive, 0 < INR (Pos.to_nat p). Proof. intro; apply lt_0_INR. simpl; auto with real. apply Pos2Nat.is_pos. Qed. Hint Resolve pos_INR_nat_of_P: real. (**********) Lemma pos_INR : forall n:nat, 0 <= INR n. Proof. intro n; case n. simpl; auto with real. auto with arith real. Qed. Hint Resolve pos_INR: real. Lemma INR_lt : forall n m:nat, INR n < INR m -> (n < m)%nat. Proof. intros n m. revert n. induction m ; intros n H. - elim (Rlt_irrefl 0). apply Rle_lt_trans with (2 := H). apply pos_INR. - destruct n as [|n]. apply Nat.lt_0_succ. apply lt_n_S, IHm. rewrite 2!S_INR in H. apply Rplus_lt_reg_r with (1 := H). Qed. Hint Resolve INR_lt: real. (*********) Lemma le_INR : forall n m:nat, (n <= m)%nat -> INR n <= INR m. Proof. simple induction 1; intros; auto with real. rewrite S_INR. apply Rle_trans with (INR m0); auto with real. Qed. Hint Resolve le_INR: real. (**********) Lemma INR_not_0 : forall n:nat, INR n <> 0 -> n <> 0%nat. Proof. red; intros n H H1. apply H. rewrite H1; trivial. Qed. Hint Immediate INR_not_0: real. (**********) Lemma not_0_INR : forall n:nat, n <> 0%nat -> INR n <> 0. Proof. intro n; case n. intro; absurd (0%nat = 0%nat); trivial. intros; rewrite S_INR. apply Rgt_not_eq; red; auto with real. Qed. Hint Resolve not_0_INR: real. Lemma not_INR : forall n m:nat, n <> m -> INR n <> INR m. Proof. intros n m H; case (le_or_lt n m); intros H1. case (le_lt_or_eq _ _ H1); intros H2. apply Rlt_dichotomy_converse; auto with real. exfalso; auto. apply not_eq_sym; apply Rlt_dichotomy_converse; auto with real. Qed. Hint Resolve not_INR: real. Lemma INR_eq : forall n m:nat, INR n = INR m -> n = m. Proof. intros n m HR. destruct (dec_eq_nat n m) as [H|H]. exact H. now apply not_INR in H. Qed. Hint Resolve INR_eq: real. Lemma INR_le : forall n m:nat, INR n <= INR m -> (n <= m)%nat. Proof. intros; elim H; intro. generalize (INR_lt n m H0); intro; auto with arith. generalize (INR_eq n m H0); intro; rewrite H1; auto. Qed. Hint Resolve INR_le: real. Lemma not_1_INR : forall n:nat, n <> 1%nat -> INR n <> 1. Proof. intros n. apply not_INR. Qed. Hint Resolve not_1_INR: real. (*********************************************************) (** ** Injection from [Z] to [R] *) (*********************************************************) (**********) Lemma IZN : forall n:Z, (0 <= n)%Z -> exists m : nat, n = Z.of_nat m. Proof. intros z; idtac; apply Z_of_nat_complete; assumption. Qed. Lemma INR_IPR : forall p, INR (Pos.to_nat p) = IPR p. Proof. assert (H: forall p, 2 * INR (Pos.to_nat p) = IPR_2 p). induction p as [p|p|] ; simpl IPR_2. rewrite Pos2Nat.inj_xI, S_INR, mult_INR, <- IHp. now rewrite (Rplus_comm (2 * _)). now rewrite Pos2Nat.inj_xO, mult_INR, <- IHp. apply Rmult_1_r. intros [p|p|] ; unfold IPR. rewrite Pos2Nat.inj_xI, S_INR, mult_INR, <- H. apply Rplus_comm. now rewrite Pos2Nat.inj_xO, mult_INR, <- H. easy. Qed. (**********) Lemma INR_IZR_INZ : forall n:nat, INR n = IZR (Z.of_nat n). Proof. intros [|n]. easy. simpl Z.of_nat. unfold IZR. now rewrite <- INR_IPR, SuccNat2Pos.id_succ. Qed. Lemma plus_IZR_NEG_POS : forall p q:positive, IZR (Zpos p + Zneg q) = IZR (Zpos p) + IZR (Zneg q). Proof. intros p q; simpl. rewrite Z.pos_sub_spec. case Pos.compare_spec; intros H; unfold IZR. subst. ring. rewrite <- 3!INR_IPR, Pos2Nat.inj_sub by trivial. rewrite minus_INR by (now apply lt_le_weak, Pos2Nat.inj_lt). ring. rewrite <- 3!INR_IPR, Pos2Nat.inj_sub by trivial. rewrite minus_INR by (now apply lt_le_weak, Pos2Nat.inj_lt). ring. Qed. (**********) Lemma plus_IZR : forall n m:Z, IZR (n + m) = IZR n + IZR m. Proof. intro z; destruct z; intro t; destruct t; intros; auto with real. simpl. unfold IZR. rewrite <- 3!INR_IPR, Pos2Nat.inj_add. apply plus_INR. apply plus_IZR_NEG_POS. rewrite Z.add_comm; rewrite Rplus_comm; apply plus_IZR_NEG_POS. simpl. unfold IZR. rewrite <- 3!INR_IPR, Pos2Nat.inj_add, plus_INR. apply Ropp_plus_distr. Qed. (**********) Lemma mult_IZR : forall n m:Z, IZR (n * m) = IZR n * IZR m. Proof. intros z t; case z; case t; simpl; auto with real; unfold IZR; intros m n; rewrite <- 3!INR_IPR, Pos2Nat.inj_mul, mult_INR; ring. Qed. Lemma pow_IZR : forall z n, pow (IZR z) n = IZR (Z.pow z (Z.of_nat n)). Proof. intros z [|n];simpl;trivial. rewrite Zpower_pos_nat. rewrite SuccNat2Pos.id_succ. unfold Zpower_nat;simpl. rewrite mult_IZR. induction n;simpl;trivial. rewrite mult_IZR;ring[IHn]. Qed. (**********) Lemma succ_IZR : forall n:Z, IZR (Z.succ n) = IZR n + 1. Proof. intro; unfold Z.succ; apply plus_IZR. Qed. (**********) Lemma opp_IZR : forall n:Z, IZR (- n) = - IZR n. Proof. intros [|z|z]; unfold IZR; simpl; auto with real. Qed. Definition Ropp_Ropp_IZR := opp_IZR. Lemma minus_IZR : forall n m:Z, IZR (n - m) = IZR n - IZR m. Proof. intros; unfold Z.sub, Rminus. rewrite <- opp_IZR. apply plus_IZR. Qed. (**********) Lemma Z_R_minus : forall n m:Z, IZR n - IZR m = IZR (n - m). Proof. intros z1 z2; unfold Rminus; unfold Z.sub. rewrite <- (Ropp_Ropp_IZR z2); symmetry ; apply plus_IZR. Qed. (**********) Lemma lt_0_IZR : forall n:Z, 0 < IZR n -> (0 < n)%Z. Proof. intro z; case z; simpl; intros. elim (Rlt_irrefl _ H). easy. elim (Rlt_not_le _ _ H). unfold IZR. rewrite <- INR_IPR. auto with real. Qed. (**********) Lemma lt_IZR : forall n m:Z, IZR n < IZR m -> (n < m)%Z. Proof. intros z1 z2 H; apply Z.lt_0_sub. apply lt_0_IZR. rewrite <- Z_R_minus. exact (Rgt_minus (IZR z2) (IZR z1) H). Qed. (**********) Lemma eq_IZR_R0 : forall n:Z, IZR n = 0 -> n = 0%Z. Proof. intro z; destruct z; simpl; intros; auto with zarith. elim Rgt_not_eq with (2 := H). unfold IZR. rewrite <- INR_IPR. apply lt_0_INR, Pos2Nat.is_pos. elim Rlt_not_eq with (2 := H). unfold IZR. rewrite <- INR_IPR. apply Ropp_lt_gt_0_contravar, lt_0_INR, Pos2Nat.is_pos. Qed. (**********) Lemma eq_IZR : forall n m:Z, IZR n = IZR m -> n = m. Proof. intros z1 z2 H; generalize (Rminus_diag_eq (IZR z1) (IZR z2) H); rewrite (Z_R_minus z1 z2); intro; generalize (eq_IZR_R0 (z1 - z2) H0); intro; omega. Qed. (**********) Lemma not_0_IZR : forall n:Z, n <> 0%Z -> IZR n <> 0. Proof. intros z H; red; intros H0; case H. apply eq_IZR; auto. Qed. (*********) Lemma le_0_IZR : forall n:Z, 0 <= IZR n -> (0 <= n)%Z. Proof. unfold Rle; intros z [H| H]. red; intro; apply (Z.lt_le_incl 0 z (lt_0_IZR z H)); assumption. rewrite (eq_IZR_R0 z); auto with zarith real. Qed. (**********) Lemma le_IZR : forall n m:Z, IZR n <= IZR m -> (n <= m)%Z. Proof. unfold Rle; intros z1 z2 [H| H]. apply (Z.lt_le_incl z1 z2); auto with real. apply lt_IZR; trivial. rewrite (eq_IZR z1 z2); auto with zarith real. Qed. (**********) Lemma le_IZR_R1 : forall n:Z, IZR n <= 1 -> (n <= 1)%Z. Proof. intros n. apply le_IZR. Qed. (**********) Lemma IZR_ge : forall n m:Z, (n >= m)%Z -> IZR n >= IZR m. Proof. intros m n H; apply Rnot_lt_ge; red; intro. generalize (lt_IZR m n H0); intro; omega. Qed. Lemma IZR_le : forall n m:Z, (n <= m)%Z -> IZR n <= IZR m. Proof. intros m n H; apply Rnot_gt_le; red; intro. unfold Rgt in H0; generalize (lt_IZR n m H0); intro; omega. Qed. Lemma IZR_lt : forall n m:Z, (n < m)%Z -> IZR n < IZR m. Proof. intros m n H; cut (m <= n)%Z. intro H0; elim (IZR_le m n H0); intro; auto. generalize (eq_IZR m n H1); intro; exfalso; omega. omega. Qed. Lemma IZR_neq : forall z1 z2:Z, z1 <> z2 -> IZR z1 <> IZR z2. Proof. intros; red; intro; elim H; apply eq_IZR; assumption. Qed. Hint Extern 0 (IZR _ <= IZR _) => apply IZR_le, Zle_bool_imp_le, eq_refl : real. Hint Extern 0 (IZR _ >= IZR _) => apply Rle_ge, IZR_le, Zle_bool_imp_le, eq_refl : real. Hint Extern 0 (IZR _ < IZR _) => apply IZR_lt, eq_refl : real. Hint Extern 0 (IZR _ > IZR _) => apply IZR_lt, eq_refl : real. Hint Extern 0 (IZR _ <> IZR _) => apply IZR_neq, Zeq_bool_neq, eq_refl : real. Lemma one_IZR_lt1 : forall n:Z, -1 < IZR n < 1 -> n = 0%Z. Proof. intros z [H1 H2]. apply Z.le_antisymm. apply Z.lt_succ_r; apply lt_IZR; trivial. change 0%Z with (Z.succ (-1)). apply Z.le_succ_l; apply lt_IZR; trivial. Qed. Lemma one_IZR_r_R1 : forall r (n m:Z), r < IZR n <= r + 1 -> r < IZR m <= r + 1 -> n = m. Proof. intros r z x [H1 H2] [H3 H4]. cut ((z - x)%Z = 0%Z); auto with zarith. apply one_IZR_lt1. rewrite <- Z_R_minus; split. replace (-1) with (r - (r + 1)). unfold Rminus; apply Rplus_lt_le_compat; auto with real. ring. replace 1 with (r + 1 - r). unfold Rminus; apply Rplus_le_lt_compat; auto with real. ring. Qed. (**********) Lemma single_z_r_R1 : forall r (n m:Z), r < IZR n -> IZR n <= r + 1 -> r < IZR m -> IZR m <= r + 1 -> n = m. Proof. intros; apply one_IZR_r_R1 with r; auto. Qed. (**********) Lemma tech_single_z_r_R1 : forall r (n:Z), r < IZR n -> IZR n <= r + 1 -> (exists s : Z, s <> n /\ r < IZR s /\ IZR s <= r + 1) -> False. Proof. intros r z H1 H2 [s [H3 [H4 H5]]]. apply H3; apply single_z_r_R1 with r; trivial. Qed. (*********) Lemma Rmult_le_pos : forall r1 r2, 0 <= r1 -> 0 <= r2 -> 0 <= r1 * r2. Proof. intros x y H H0; rewrite <- (Rmult_0_l x); rewrite <- (Rmult_comm x); apply (Rmult_le_compat_l x 0 y H H0). Qed. Lemma Rinv_le_contravar : forall x y, 0 < x -> x <= y -> / y <= / x. Proof. intros x y H1 [H2|H2]. apply Rlt_le. apply Rinv_lt_contravar with (2 := H2). apply Rmult_lt_0_compat with (1 := H1). now apply Rlt_trans with x. rewrite H2. apply Rle_refl. Qed. Lemma Rle_Rinv : forall x y:R, 0 < x -> 0 < y -> x <= y -> / y <= / x. Proof. intros x y H _. apply Rinv_le_contravar with (1 := H). Qed. Lemma Ropp_div : forall x y, -x/y = - (x / y). intros x y; unfold Rdiv; ring. Qed. Lemma double : forall r1, 2 * r1 = r1 + r1. Proof. intro; ring. Qed. Lemma double_var : forall r1, r1 = r1 / 2 + r1 / 2. Proof. intro; rewrite <- double; unfold Rdiv; rewrite <- Rmult_assoc; symmetry ; apply Rinv_r_simpl_m. now apply not_0_IZR. Qed. Lemma R_rm : ring_morph 0%R 1%R Rplus Rmult Rminus Ropp eq 0%Z 1%Z Zplus Zmult Zminus Z.opp Zeq_bool IZR. Proof. constructor ; try easy. exact plus_IZR. exact minus_IZR. exact mult_IZR. exact opp_IZR. intros x y H. apply f_equal. now apply Zeq_bool_eq. Qed. Lemma Zeq_bool_IZR x y : IZR x = IZR y -> Zeq_bool x y = true. Proof. intros H. apply Zeq_is_eq_bool. now apply eq_IZR. Qed. Add Field RField : Rfield (completeness Zeq_bool_IZR, morphism R_rm, constants [IZR_tac], power_tac R_power_theory [Rpow_tac]). (*********************************************************) (** ** Other rules about < and <= *) (*********************************************************) Lemma Rmult_ge_0_gt_0_lt_compat : forall r1 r2 r3 r4, r3 >= 0 -> r2 > 0 -> r1 < r2 -> r3 < r4 -> r1 * r3 < r2 * r4. Proof. intros; apply Rle_lt_trans with (r2 * r3); auto with real. Qed. Lemma le_epsilon : forall r1 r2, (forall eps:R, 0 < eps -> r1 <= r2 + eps) -> r1 <= r2. Proof. intros x y H. destruct (Rle_or_lt x y) as [H1|H1]. exact H1. apply Rplus_le_reg_r with x. replace (y + x) with (2 * (y + (x - y) * / 2)) by field. replace (x + x) with (2 * x) by ring. apply Rmult_le_compat_l. now apply (IZR_le 0 2). apply H. apply Rmult_lt_0_compat. now apply Rgt_minus. apply Rinv_0_lt_compat, Rlt_0_2. Qed. (**********) Lemma completeness_weak : forall E:R -> Prop, bound E -> (exists x : R, E x) -> exists m : R, is_lub E m. Proof. intros; elim (completeness E H H0); intros; split with x; assumption. Qed. Lemma Rdiv_lt_0_compat : forall a b, 0 < a -> 0 < b -> 0 < a/b. Proof. intros; apply Rmult_lt_0_compat;[|apply Rinv_0_lt_compat]; assumption. Qed. Lemma Rdiv_plus_distr : forall a b c, (a + b)/c = a/c + b/c. intros a b c; apply Rmult_plus_distr_r. Qed. Lemma Rdiv_minus_distr : forall a b c, (a - b)/c = a/c - b/c. intros a b c; unfold Rminus, Rdiv; rewrite Rmult_plus_distr_r; ring. Qed. (* A test for equality function. *) Lemma Req_EM_T : forall r1 r2:R, {r1 = r2} + {r1 <> r2}. Proof. intros; destruct (total_order_T r1 r2) as [[H|]|H]. - right; red; intros ->; elim (Rlt_irrefl r2 H). - left; assumption. - right; red; intros ->; elim (Rlt_irrefl r2 H). Qed. (*********************************************************) (** * Definitions of new types *) (*********************************************************) Record nonnegreal : Type := mknonnegreal {nonneg :> R; cond_nonneg : 0 <= nonneg}. Record posreal : Type := mkposreal {pos :> R; cond_pos : 0 < pos}. Record nonposreal : Type := mknonposreal {nonpos :> R; cond_nonpos : nonpos <= 0}. Record negreal : Type := mknegreal {neg :> R; cond_neg : neg < 0}. Record nonzeroreal : Type := mknonzeroreal {nonzero :> R; cond_nonzero : nonzero <> 0}. (** Compatibility *) Notation prod_neq_R0 := Rmult_integral_contrapositive_currified (only parsing). Notation minus_Rgt := Rminus_gt (only parsing). Notation minus_Rge := Rminus_ge (only parsing). Notation plus_le_is_le := Rplus_le_reg_pos_r (only parsing). Notation plus_lt_is_lt := Rplus_lt_reg_pos_r (only parsing). Notation INR_lt_1 := lt_1_INR (only parsing). Notation lt_INR_0 := lt_0_INR (only parsing). Notation not_nm_INR := not_INR (only parsing). Notation INR_pos := pos_INR_nat_of_P (only parsing). Notation not_INR_O := INR_not_0 (only parsing). Notation not_O_INR := not_0_INR (only parsing). Notation not_O_IZR := not_0_IZR (only parsing). Notation le_O_IZR := le_0_IZR (only parsing). Notation lt_O_IZR := lt_0_IZR (only parsing).