(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* R) (i:nat) : R := (-1) ^ i * Un i. Definition positivity_seq (Un:nat -> R) : Prop := forall n:nat, 0 <= Un n. Lemma CV_ALT_step0 : forall Un:nat -> R, Un_decreasing Un -> Un_growing (fun N:nat => sum_f_R0 (tg_alt Un) (S (2 * N))). Proof. intros; unfold Un_growing; intro. cut ((2 * S n)%nat = S (S (2 * n))). intro; rewrite H0. do 4 rewrite tech5; repeat rewrite Rplus_assoc; apply Rplus_le_compat_l. pattern (tg_alt Un (S (2 * n))) at 1; rewrite <- Rplus_0_r. apply Rplus_le_compat_l. unfold tg_alt; rewrite <- H0; rewrite pow_1_odd; rewrite pow_1_even; rewrite Rmult_1_l. apply Rplus_le_reg_l with (Un (S (2 * S n))). rewrite Rplus_0_r; replace (Un (S (2 * S n)) + (Un (2 * S n)%nat + -1 * Un (S (2 * S n)))) with (Un (2 * S n)%nat); [ idtac | ring ]. apply H. cut (forall n:nat, S n = (n + 1)%nat); [ intro | intro; ring ]. rewrite (H0 n); rewrite (H0 (S (2 * n))); rewrite (H0 (2 * n)%nat); ring. Qed. Lemma CV_ALT_step1 : forall Un:nat -> R, Un_decreasing Un -> Un_decreasing (fun N:nat => sum_f_R0 (tg_alt Un) (2 * N)). Proof. intros; unfold Un_decreasing; intro. cut ((2 * S n)%nat = S (S (2 * n))). intro; rewrite H0; do 2 rewrite tech5; repeat rewrite Rplus_assoc. pattern (sum_f_R0 (tg_alt Un) (2 * n)) at 2; rewrite <- Rplus_0_r. apply Rplus_le_compat_l. unfold tg_alt; rewrite <- H0; rewrite pow_1_odd; rewrite pow_1_even; rewrite Rmult_1_l. apply Rplus_le_reg_l with (Un (S (2 * n))). rewrite Rplus_0_r; replace (Un (S (2 * n)) + (-1 * Un (S (2 * n)) + Un (2 * S n)%nat)) with (Un (2 * S n)%nat); [ idtac | ring ]. rewrite H0; apply H. cut (forall n:nat, S n = (n + 1)%nat); [ intro | intro; ring ]. rewrite (H0 n); rewrite (H0 (S (2 * n))); rewrite (H0 (2 * n)%nat); ring. Qed. (**********) Lemma CV_ALT_step2 : forall (Un:nat -> R) (N:nat), Un_decreasing Un -> positivity_seq Un -> sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * N)) <= 0. Proof. intros; induction N as [| N HrecN]. simpl; unfold tg_alt; simpl; rewrite Rmult_1_r. replace (-1 * -1 * Un 2%nat) with (Un 2%nat); [ idtac | ring ]. apply Rplus_le_reg_l with (Un 1%nat); rewrite Rplus_0_r. replace (Un 1%nat + (-1 * Un 1%nat + Un 2%nat)) with (Un 2%nat); [ apply H | ring ]. cut (S (2 * S N) = S (S (S (2 * N)))). intro; rewrite H1; do 2 rewrite tech5. apply Rle_trans with (sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * N))). pattern (sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * N))) at 2; rewrite <- Rplus_0_r. rewrite Rplus_assoc; apply Rplus_le_compat_l. unfold tg_alt; rewrite <- H1. rewrite pow_1_odd. cut (S (S (2 * S N)) = (2 * S (S N))%nat). intro; rewrite H2; rewrite pow_1_even; rewrite Rmult_1_l; rewrite <- H2. apply Rplus_le_reg_l with (Un (S (2 * S N))). rewrite Rplus_0_r; replace (Un (S (2 * S N)) + (-1 * Un (S (2 * S N)) + Un (S (S (2 * S N))))) with (Un (S (S (2 * S N)))); [ idtac | ring ]. apply H. ring. apply HrecN. ring. Qed. (** A more general inequality *) Lemma CV_ALT_step3 : forall (Un:nat -> R) (N:nat), Un_decreasing Un -> positivity_seq Un -> sum_f_R0 (fun i:nat => tg_alt Un (S i)) N <= 0. Proof. intros; induction N as [| N HrecN]. simpl; unfold tg_alt; simpl; rewrite Rmult_1_r. apply Rplus_le_reg_l with (Un 1%nat). rewrite Rplus_0_r; replace (Un 1%nat + -1 * Un 1%nat) with 0; [ apply H0 | ring ]. assert (H1 := even_odd_cor N). elim H1; intros. elim H2; intro. rewrite H3; apply CV_ALT_step2; assumption. rewrite H3; rewrite tech5. apply Rle_trans with (sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * x))). pattern (sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * x))) at 2; rewrite <- Rplus_0_r. apply Rplus_le_compat_l. unfold tg_alt; simpl. replace (x + (x + 0))%nat with (2 * x)%nat; [ idtac | ring ]. rewrite pow_1_even. replace (-1 * (-1 * (-1 * 1)) * Un (S (S (S (2 * x))))) with (- Un (S (S (S (2 * x))))); [ idtac | ring ]. apply Rplus_le_reg_l with (Un (S (S (S (2 * x))))). rewrite Rplus_0_r; rewrite Rplus_opp_r. apply H0. apply CV_ALT_step2; assumption. Qed. (**********) Lemma CV_ALT_step4 : forall Un:nat -> R, Un_decreasing Un -> positivity_seq Un -> has_ub (fun N:nat => sum_f_R0 (tg_alt Un) (S (2 * N))). Proof. intros; unfold has_ub; unfold bound. exists (Un 0%nat). unfold is_upper_bound; intros; elim H1; intros. rewrite H2; rewrite decomp_sum. replace (tg_alt Un 0) with (Un 0%nat). pattern (Un 0%nat) at 2; rewrite <- Rplus_0_r. apply Rplus_le_compat_l. apply CV_ALT_step3; assumption. unfold tg_alt; simpl; ring. apply lt_O_Sn. Qed. (** This lemma gives an interesting result about alternated series *) Lemma CV_ALT : forall Un:nat -> R, Un_decreasing Un -> positivity_seq Un -> Un_cv Un 0 -> { l:R | Un_cv (fun N:nat => sum_f_R0 (tg_alt Un) N) l }. Proof. intros. assert (H2 := CV_ALT_step0 _ H). assert (H3 := CV_ALT_step4 _ H H0). destruct (growing_cv _ H2 H3) as (x,p). exists x. unfold Un_cv; unfold R_dist; unfold Un_cv in H1; unfold R_dist in H1; unfold Un_cv in p; unfold R_dist in p. intros; cut (0 < eps / 2); [ intro | unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ]. elim (H1 (eps / 2) H5); intros N2 H6. elim (p (eps / 2) H5); intros N1 H7. set (N := max (S (2 * N1)) N2). exists N; intros. assert (H9 := even_odd_cor n). elim H9; intros P H10. cut (N1 <= P)%nat. intro; elim H10; intro. replace (sum_f_R0 (tg_alt Un) n - x) with (sum_f_R0 (tg_alt Un) (S n) - x + - tg_alt Un (S n)). apply Rle_lt_trans with (Rabs (sum_f_R0 (tg_alt Un) (S n) - x) + Rabs (- tg_alt Un (S n))). apply Rabs_triang. rewrite (double_var eps); apply Rplus_lt_compat. rewrite H12; apply H7; assumption. rewrite Rabs_Ropp; unfold tg_alt; rewrite Rabs_mult; rewrite pow_1_abs; rewrite Rmult_1_l; unfold Rminus in H6; rewrite Ropp_0 in H6; rewrite <- (Rplus_0_r (Un (S n))); apply H6. unfold ge; apply le_trans with n. apply le_trans with N; [ unfold N; apply le_max_r | assumption ]. apply le_n_Sn. rewrite tech5; ring. rewrite H12; apply Rlt_trans with (eps / 2). apply H7; assumption. unfold Rdiv; apply Rmult_lt_reg_l with 2. prove_sup0. rewrite (Rmult_comm 2); rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ rewrite Rmult_1_r | discrR ]. rewrite double. pattern eps at 1; rewrite <- (Rplus_0_r eps); apply Rplus_lt_compat_l; assumption. elim H10; intro; apply le_double. rewrite <- H11; apply le_trans with N. unfold N; apply le_trans with (S (2 * N1)); [ apply le_n_Sn | apply le_max_l ]. assumption. apply lt_n_Sm_le. rewrite <- H11. apply lt_le_trans with N. unfold N; apply lt_le_trans with (S (2 * N1)). apply lt_n_Sn. apply le_max_l. assumption. Qed. (*************************************************) (** * Convergence of alternated series *) Theorem alternated_series : forall Un:nat -> R, Un_decreasing Un -> Un_cv Un 0 -> { l:R | Un_cv (fun N:nat => sum_f_R0 (tg_alt Un) N) l }. Proof. intros; apply CV_ALT. assumption. unfold positivity_seq; apply decreasing_ineq; assumption. assumption. Qed. Theorem alternated_series_ineq : forall (Un:nat -> R) (l:R) (N:nat), Un_decreasing Un -> Un_cv Un 0 -> Un_cv (fun N:nat => sum_f_R0 (tg_alt Un) N) l -> sum_f_R0 (tg_alt Un) (S (2 * N)) <= l <= sum_f_R0 (tg_alt Un) (2 * N). Proof. intros. cut (Un_cv (fun N:nat => sum_f_R0 (tg_alt Un) (2 * N)) l). cut (Un_cv (fun N:nat => sum_f_R0 (tg_alt Un) (S (2 * N))) l). intros; split. apply (growing_ineq (fun N:nat => sum_f_R0 (tg_alt Un) (S (2 * N)))). apply CV_ALT_step0; assumption. assumption. apply (decreasing_ineq (fun N:nat => sum_f_R0 (tg_alt Un) (2 * N))). apply CV_ALT_step1; assumption. assumption. unfold Un_cv; unfold R_dist; unfold Un_cv in H1; unfold R_dist in H1; intros. elim (H1 eps H2); intros. exists x; intros. apply H3. unfold ge; apply le_trans with (2 * n)%nat. apply le_trans with n. assumption. assert (H5 := mult_O_le n 2). elim H5; intro. cut (0%nat <> 2%nat); [ intro; elim H7; symmetry ; assumption | discriminate ]. assumption. apply le_n_Sn. unfold Un_cv; unfold R_dist; unfold Un_cv in H1; unfold R_dist in H1; intros. elim (H1 eps H2); intros. exists x; intros. apply H3. unfold ge; apply le_trans with n. assumption. assert (H5 := mult_O_le n 2). elim H5; intro. cut (0%nat <> 2%nat); [ intro; elim H7; symmetry ; assumption | discriminate ]. assumption. Qed. (***************************************) (** * Application : construction of PI *) (***************************************) Definition PI_tg (n:nat) := / INR (2 * n + 1). Lemma PI_tg_pos : forall n:nat, 0 <= PI_tg n. Proof. intro; unfold PI_tg; left; apply Rinv_0_lt_compat; apply lt_INR_0; replace (2 * n + 1)%nat with (S (2 * n)); [ apply lt_O_Sn | ring ]. Qed. Lemma PI_tg_decreasing : Un_decreasing PI_tg. Proof. unfold PI_tg, Un_decreasing; intro. apply Rmult_le_reg_l with (INR (2 * n + 1)). apply lt_INR_0. replace (2 * n + 1)%nat with (S (2 * n)); [ apply lt_O_Sn | ring ]. rewrite <- Rinv_r_sym. apply Rmult_le_reg_l with (INR (2 * S n + 1)). apply lt_INR_0. replace (2 * S n + 1)%nat with (S (2 * S n)); [ apply lt_O_Sn | ring ]. rewrite (Rmult_comm (INR (2 * S n + 1))); rewrite Rmult_assoc; rewrite <- Rinv_l_sym. do 2 rewrite Rmult_1_r; apply le_INR. replace (2 * S n + 1)%nat with (S (S (2 * n + 1))). apply le_trans with (S (2 * n + 1)); apply le_n_Sn. ring. apply not_O_INR; discriminate. apply not_O_INR; replace (2 * n + 1)%nat with (S (2 * n)); [ discriminate | ring ]. Qed. Lemma PI_tg_cv : Un_cv PI_tg 0. Proof. unfold Un_cv; unfold R_dist; intros. cut (0 < 2 * eps); [ intro | apply Rmult_lt_0_compat; [ prove_sup0 | assumption ] ]. assert (H1 := archimed (/ (2 * eps))). cut (0 <= up (/ (2 * eps)))%Z. intro; assert (H3 := IZN (up (/ (2 * eps))) H2). elim H3; intros N H4. cut (0 < N)%nat. intro; exists N; intros. cut (0 < n)%nat. intro; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; rewrite Rabs_right. unfold PI_tg; apply Rlt_trans with (/ INR (2 * n)). apply Rmult_lt_reg_l with (INR (2 * n)). apply lt_INR_0. replace (2 * n)%nat with (n + n)%nat; [ idtac | ring ]. apply lt_le_trans with n. assumption. apply le_plus_l. rewrite <- Rinv_r_sym. apply Rmult_lt_reg_l with (INR (2 * n + 1)). apply lt_INR_0. replace (2 * n + 1)%nat with (S (2 * n)); [ apply lt_O_Sn | ring ]. rewrite (Rmult_comm (INR (2 * n + 1))). rewrite Rmult_assoc; rewrite <- Rinv_l_sym. do 2 rewrite Rmult_1_r; apply lt_INR. replace (2 * n + 1)%nat with (S (2 * n)); [ apply lt_n_Sn | ring ]. apply not_O_INR; replace (2 * n + 1)%nat with (S (2 * n)); [ discriminate | ring ]. replace n with (S (pred n)). apply not_O_INR; discriminate. symmetry ; apply S_pred with 0%nat. assumption. apply Rle_lt_trans with (/ INR (2 * N)). apply Rinv_le_contravar. rewrite mult_INR; apply Rmult_lt_0_compat; [ simpl; prove_sup0 | apply lt_INR_0; assumption ]. apply le_INR. now apply mult_le_compat_l. rewrite mult_INR. apply Rmult_lt_reg_l with (INR N / eps). apply Rdiv_lt_0_compat with (2 := H). now apply (lt_INR 0). replace (_ */ _) with (/(2 * eps)). replace (_ / _ * _) with (INR N). rewrite INR_IZR_INZ. now rewrite <- H4. field. now apply Rgt_not_eq. simpl (INR 2); field; split. now apply Rgt_not_eq, (lt_INR 0). now apply Rgt_not_eq. apply Rle_ge; apply PI_tg_pos. apply lt_le_trans with N; assumption. elim H1; intros H5 _. destruct (lt_eq_lt_dec 0 N) as [[| <- ]|H6]. assumption. rewrite H4 in H5. simpl in H5. cut (0 < / (2 * eps)); [ intro | apply Rinv_0_lt_compat; assumption ]. elim (Rlt_irrefl _ (Rlt_trans _ _ _ H6 H5)). elim (lt_n_O _ H6). apply le_IZR. left; apply Rlt_trans with (/ (2 * eps)). apply Rinv_0_lt_compat; assumption. elim H1; intros; assumption. Qed. Lemma exist_PI : { l:R | Un_cv (fun N:nat => sum_f_R0 (tg_alt PI_tg) N) l }. Proof. apply alternated_series. apply PI_tg_decreasing. apply PI_tg_cv. Qed. (** Now, PI is defined *) Definition Alt_PI : R := 4 * (let (a,_) := exist_PI in a). (** We can get an approximation of PI with the following inequality *) Lemma Alt_PI_ineq : forall N:nat, sum_f_R0 (tg_alt PI_tg) (S (2 * N)) <= Alt_PI / 4 <= sum_f_R0 (tg_alt PI_tg) (2 * N). Proof. intro; apply alternated_series_ineq. apply PI_tg_decreasing. apply PI_tg_cv. unfold Alt_PI; case exist_PI; intro. replace (4 * x / 4) with x. trivial. unfold Rdiv; rewrite (Rmult_comm 4); rewrite Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_r; reflexivity | discrR ]. Qed. Lemma Alt_PI_RGT_0 : 0 < Alt_PI. Proof. assert (H := Alt_PI_ineq 0). apply Rmult_lt_reg_l with (/ 4). apply Rinv_0_lt_compat; prove_sup0. rewrite Rmult_0_r; rewrite Rmult_comm. elim H; clear H; intros H _. unfold Rdiv in H; apply Rlt_le_trans with (sum_f_R0 (tg_alt PI_tg) (S (2 * 0))). simpl; unfold tg_alt; simpl; rewrite Rmult_1_l; rewrite Rmult_1_r; apply Rplus_lt_reg_l with (PI_tg 1). rewrite Rplus_0_r; replace (PI_tg 1 + (PI_tg 0 + -1 * PI_tg 1)) with (PI_tg 0); [ unfold PI_tg | ring ]. simpl; apply Rinv_lt_contravar. rewrite Rmult_1_l; replace (2 + 1) with 3; [ prove_sup0 | ring ]. rewrite Rplus_comm; pattern 1 at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; prove_sup0. assumption. Qed.