(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* R, (forall n:nat, 0 < An n) -> Un_cv (fun n:nat => Rabs (An (S n) / An n)) 0 -> { l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }. Proof. intros An H H0. cut ({ l:R | is_lub (EUn (fun N:nat => sum_f_R0 An N)) l } -> { l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }). intro X; apply X. apply completeness. unfold Un_cv in H0; unfold bound; cut (0 < / 2); [ intro | apply Rinv_0_lt_compat; prove_sup0 ]. elim (H0 (/ 2) H1); intros. exists (sum_f_R0 An x + 2 * An (S x)). unfold is_upper_bound; intros; unfold EUn in H3; destruct H3 as (x1,->). destruct (lt_eq_lt_dec x1 x) as [[| -> ]|]. replace (sum_f_R0 An x) with (sum_f_R0 An x1 + sum_f_R0 (fun i:nat => An (S x1 + i)%nat) (x - S x1)). pattern (sum_f_R0 An x1) at 1; rewrite <- Rplus_0_r; rewrite Rplus_assoc; apply Rplus_le_compat_l. left; apply Rplus_lt_0_compat. apply tech1; intros; apply H. apply Rmult_lt_0_compat; [ prove_sup0 | apply H ]. symmetry ; apply tech2; assumption. pattern (sum_f_R0 An x) at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l. left; apply Rmult_lt_0_compat; [ prove_sup0 | apply H ]. replace (sum_f_R0 An x1) with (sum_f_R0 An x + sum_f_R0 (fun i:nat => An (S x + i)%nat) (x1 - S x)). apply Rplus_le_compat_l. cut (sum_f_R0 (fun i:nat => An (S x + i)%nat) (x1 - S x) <= An (S x) * sum_f_R0 (fun i:nat => (/ 2) ^ i) (x1 - S x)). intro; apply Rle_trans with (An (S x) * sum_f_R0 (fun i:nat => (/ 2) ^ i) (x1 - S x)). assumption. rewrite <- (Rmult_comm (An (S x))); apply Rmult_le_compat_l. left; apply H. rewrite tech3. replace (1 - / 2) with (/ 2). unfold Rdiv; rewrite Rinv_involutive. pattern 2 at 3; rewrite <- Rmult_1_r; rewrite <- (Rmult_comm 2); apply Rmult_le_compat_l. left; prove_sup0. left; apply Rplus_lt_reg_l with ((/ 2) ^ S (x1 - S x)). replace ((/ 2) ^ S (x1 - S x) + (1 - (/ 2) ^ S (x1 - S x))) with 1; [ idtac | ring ]. rewrite <- (Rplus_comm 1); pattern 1 at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l. apply pow_lt; apply Rinv_0_lt_compat; prove_sup0. discrR. apply Rmult_eq_reg_l with 2. rewrite Rmult_minus_distr_l; rewrite <- Rinv_r_sym. ring. discrR. discrR. replace 1 with (/ 1); [ apply tech7; discrR | apply Rinv_1 ]. replace (An (S x)) with (An (S x + 0)%nat). apply (tech6 (fun i:nat => An (S x + i)%nat) (/ 2)). left; apply Rinv_0_lt_compat; prove_sup0. intro; cut (forall n:nat, (n >= x)%nat -> An (S n) < / 2 * An n). intro H4; replace (S x + S i)%nat with (S (S x + i)). apply H4; unfold ge; apply tech8. apply INR_eq; rewrite S_INR; do 2 rewrite plus_INR; do 2 rewrite S_INR; ring. intros; unfold R_dist in H2; apply Rmult_lt_reg_l with (/ An n). apply Rinv_0_lt_compat; apply H. do 2 rewrite (Rmult_comm (/ An n)); rewrite Rmult_assoc; rewrite <- Rinv_r_sym. rewrite Rmult_1_r; replace (An (S n) * / An n) with (Rabs (Rabs (An (S n) / An n) - 0)). apply H2; assumption. unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; rewrite Rabs_Rabsolu; rewrite Rabs_right. unfold Rdiv; reflexivity. left; unfold Rdiv; change (0 < An (S n) * / An n); apply Rmult_lt_0_compat; [ apply H | apply Rinv_0_lt_compat; apply H ]. intro H5; assert (H8 := H n); rewrite H5 in H8; elim (Rlt_irrefl _ H8). replace (S x + 0)%nat with (S x); [ reflexivity | ring ]. symmetry ; apply tech2; assumption. exists (sum_f_R0 An 0); unfold EUn; exists 0%nat; reflexivity. intros (x,H1). exists x; apply Un_cv_crit_lub; [ unfold Un_growing; intro; rewrite tech5; pattern (sum_f_R0 An n) at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left; apply H | apply H1 ]. Defined. Lemma Alembert_C2 : forall An:nat -> R, (forall n:nat, An n <> 0) -> Un_cv (fun n:nat => Rabs (An (S n) / An n)) 0 -> { l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }. Proof. intros. set (Vn := fun i:nat => (2 * Rabs (An i) + An i) / 2). set (Wn := fun i:nat => (2 * Rabs (An i) - An i) / 2). cut (forall n:nat, 0 < Vn n). intro; cut (forall n:nat, 0 < Wn n). intro; cut (Un_cv (fun n:nat => Rabs (Vn (S n) / Vn n)) 0). intro; cut (Un_cv (fun n:nat => Rabs (Wn (S n) / Wn n)) 0). intro; pose proof (Alembert_C1 Vn H1 H3) as (x,p). pose proof (Alembert_C1 Wn H2 H4) as (x0,p0). exists (x - x0); unfold Un_cv; unfold Un_cv in p; unfold Un_cv in p0; intros; cut (0 < eps / 2). intro H6; destruct (p (eps / 2) H6) as (x1,H8). clear p. destruct (p0 (eps / 2) H6) as (x2,H9). clear p0. set (N := max x1 x2). exists N; intros; replace (sum_f_R0 An n) with (sum_f_R0 Vn n - sum_f_R0 Wn n). unfold R_dist; replace (sum_f_R0 Vn n - sum_f_R0 Wn n - (x - x0)) with (sum_f_R0 Vn n - x + - (sum_f_R0 Wn n - x0)); [ idtac | ring ]; apply Rle_lt_trans with (Rabs (sum_f_R0 Vn n - x) + Rabs (- (sum_f_R0 Wn n - x0))). apply Rabs_triang. rewrite Rabs_Ropp; apply Rlt_le_trans with (eps / 2 + eps / 2). apply Rplus_lt_compat. unfold R_dist in H8; apply H8; unfold ge; apply le_trans with N; [ unfold N; apply le_max_l | assumption ]. unfold R_dist in H9; apply H9; unfold ge; apply le_trans with N; [ unfold N; apply le_max_r | assumption ]. right; symmetry ; apply double_var. symmetry ; apply tech11; intro; unfold Vn, Wn; unfold Rdiv; do 2 rewrite <- (Rmult_comm (/ 2)); apply Rmult_eq_reg_l with 2. rewrite Rmult_minus_distr_l; repeat rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym. ring. discrR. discrR. unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ]. cut (forall n:nat, / 2 * Rabs (An n) <= Wn n <= 3 * / 2 * Rabs (An n)). intro; cut (forall n:nat, / Wn n <= 2 * / Rabs (An n)). intro; cut (forall n:nat, Wn (S n) / Wn n <= 3 * Rabs (An (S n) / An n)). intro; unfold Un_cv; intros; unfold Un_cv in H0; cut (0 < eps / 3). intro; elim (H0 (eps / 3) H8); intros. exists x; intros. assert (H11 := H9 n H10). unfold R_dist; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; rewrite Rabs_Rabsolu; unfold R_dist in H11; unfold Rminus in H11; rewrite Ropp_0 in H11; rewrite Rplus_0_r in H11; rewrite Rabs_Rabsolu in H11; rewrite Rabs_right. apply Rle_lt_trans with (3 * Rabs (An (S n) / An n)). apply H6. apply Rmult_lt_reg_l with (/ 3). apply Rinv_0_lt_compat; prove_sup0. rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ]; rewrite Rmult_1_l; rewrite <- (Rmult_comm eps); unfold Rdiv in H11; exact H11. left; change (0 < Wn (S n) / Wn n); unfold Rdiv; apply Rmult_lt_0_compat. apply H2. apply Rinv_0_lt_compat; apply H2. unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ]. intro; unfold Rdiv; rewrite Rabs_mult; rewrite <- Rmult_assoc; replace 3 with (2 * (3 * / 2)); [ idtac | rewrite <- Rmult_assoc; apply Rinv_r_simpl_m; discrR ]; apply Rle_trans with (Wn (S n) * 2 * / Rabs (An n)). rewrite Rmult_assoc; apply Rmult_le_compat_l. left; apply H2. apply H5. rewrite Rabs_Rinv. replace (Wn (S n) * 2 * / Rabs (An n)) with (2 * / Rabs (An n) * Wn (S n)); [ idtac | ring ]; replace (2 * (3 * / 2) * Rabs (An (S n)) * / Rabs (An n)) with (2 * / Rabs (An n) * (3 * / 2 * Rabs (An (S n)))); [ idtac | ring ]; apply Rmult_le_compat_l. left; apply Rmult_lt_0_compat. prove_sup0. apply Rinv_0_lt_compat; apply Rabs_pos_lt; apply H. elim (H4 (S n)); intros; assumption. apply H. intro; apply Rmult_le_reg_l with (Wn n). apply H2. rewrite <- Rinv_r_sym. apply Rmult_le_reg_l with (Rabs (An n)). apply Rabs_pos_lt; apply H. rewrite Rmult_1_r; replace (Rabs (An n) * (Wn n * (2 * / Rabs (An n)))) with (2 * Wn n * (Rabs (An n) * / Rabs (An n))); [ idtac | ring ]; rewrite <- Rinv_r_sym. rewrite Rmult_1_r; apply Rmult_le_reg_l with (/ 2). apply Rinv_0_lt_compat; prove_sup0. rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_l; elim (H4 n); intros; assumption. discrR. apply Rabs_no_R0; apply H. red; intro; assert (H6 := H2 n); rewrite H5 in H6; elim (Rlt_irrefl _ H6). intro; split. unfold Wn; unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); apply Rmult_le_compat_l. left; apply Rinv_0_lt_compat; prove_sup0. pattern (Rabs (An n)) at 1; rewrite <- Rplus_0_r; rewrite double; unfold Rminus; rewrite Rplus_assoc; apply Rplus_le_compat_l. apply Rplus_le_reg_l with (An n). rewrite Rplus_0_r; rewrite (Rplus_comm (An n)); rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r; apply RRle_abs. unfold Wn; unfold Rdiv; repeat rewrite <- (Rmult_comm (/ 2)); repeat rewrite Rmult_assoc; apply Rmult_le_compat_l. left; apply Rinv_0_lt_compat; prove_sup0. unfold Rminus; rewrite double; replace (3 * Rabs (An n)) with (Rabs (An n) + Rabs (An n) + Rabs (An n)); [ idtac | ring ]; repeat rewrite Rplus_assoc; repeat apply Rplus_le_compat_l. rewrite <- Rabs_Ropp; apply RRle_abs. cut (forall n:nat, / 2 * Rabs (An n) <= Vn n <= 3 * / 2 * Rabs (An n)). intro; cut (forall n:nat, / Vn n <= 2 * / Rabs (An n)). intro; cut (forall n:nat, Vn (S n) / Vn n <= 3 * Rabs (An (S n) / An n)). intro; unfold Un_cv; intros; unfold Un_cv in H1; cut (0 < eps / 3). intro; elim (H0 (eps / 3) H7); intros. exists x; intros. assert (H10 := H8 n H9). unfold R_dist; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; rewrite Rabs_Rabsolu; unfold R_dist in H10; unfold Rminus in H10; rewrite Ropp_0 in H10; rewrite Rplus_0_r in H10; rewrite Rabs_Rabsolu in H10; rewrite Rabs_right. apply Rle_lt_trans with (3 * Rabs (An (S n) / An n)). apply H5. apply Rmult_lt_reg_l with (/ 3). apply Rinv_0_lt_compat; prove_sup0. rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ]; rewrite Rmult_1_l; rewrite <- (Rmult_comm eps); unfold Rdiv in H10; exact H10. left; change (0 < Vn (S n) / Vn n); unfold Rdiv; apply Rmult_lt_0_compat. apply H1. apply Rinv_0_lt_compat; apply H1. unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ]. intro; unfold Rdiv; rewrite Rabs_mult; rewrite <- Rmult_assoc; replace 3 with (2 * (3 * / 2)); [ idtac | rewrite <- Rmult_assoc; apply Rinv_r_simpl_m; discrR ]; apply Rle_trans with (Vn (S n) * 2 * / Rabs (An n)). rewrite Rmult_assoc; apply Rmult_le_compat_l. left; apply H1. apply H4. rewrite Rabs_Rinv. replace (Vn (S n) * 2 * / Rabs (An n)) with (2 * / Rabs (An n) * Vn (S n)); [ idtac | ring ]; replace (2 * (3 * / 2) * Rabs (An (S n)) * / Rabs (An n)) with (2 * / Rabs (An n) * (3 * / 2 * Rabs (An (S n)))); [ idtac | ring ]; apply Rmult_le_compat_l. left; apply Rmult_lt_0_compat. prove_sup0. apply Rinv_0_lt_compat; apply Rabs_pos_lt; apply H. elim (H3 (S n)); intros; assumption. apply H. intro; apply Rmult_le_reg_l with (Vn n). apply H1. rewrite <- Rinv_r_sym. apply Rmult_le_reg_l with (Rabs (An n)). apply Rabs_pos_lt; apply H. rewrite Rmult_1_r; replace (Rabs (An n) * (Vn n * (2 * / Rabs (An n)))) with (2 * Vn n * (Rabs (An n) * / Rabs (An n))); [ idtac | ring ]; rewrite <- Rinv_r_sym. rewrite Rmult_1_r; apply Rmult_le_reg_l with (/ 2). apply Rinv_0_lt_compat; prove_sup0. rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_l; elim (H3 n); intros; assumption. discrR. apply Rabs_no_R0; apply H. red; intro; assert (H5 := H1 n); rewrite H4 in H5; elim (Rlt_irrefl _ H5). intro; split. unfold Vn; unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); apply Rmult_le_compat_l. left; apply Rinv_0_lt_compat; prove_sup0. pattern (Rabs (An n)) at 1; rewrite <- Rplus_0_r; rewrite double; rewrite Rplus_assoc; apply Rplus_le_compat_l. apply Rplus_le_reg_l with (- An n); rewrite Rplus_0_r; rewrite <- (Rplus_comm (An n)); rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l; rewrite <- Rabs_Ropp; apply RRle_abs. unfold Vn; unfold Rdiv; repeat rewrite <- (Rmult_comm (/ 2)); repeat rewrite Rmult_assoc; apply Rmult_le_compat_l. left; apply Rinv_0_lt_compat; prove_sup0. unfold Rminus; rewrite double; replace (3 * Rabs (An n)) with (Rabs (An n) + Rabs (An n) + Rabs (An n)); [ idtac | ring ]; repeat rewrite Rplus_assoc; repeat apply Rplus_le_compat_l; apply RRle_abs. intro; unfold Wn; unfold Rdiv; rewrite <- (Rmult_0_r (/ 2)); rewrite <- (Rmult_comm (/ 2)); apply Rmult_lt_compat_l. apply Rinv_0_lt_compat; prove_sup0. apply Rplus_lt_reg_l with (An n); rewrite Rplus_0_r; unfold Rminus; rewrite (Rplus_comm (An n)); rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r; apply Rle_lt_trans with (Rabs (An n)). apply RRle_abs. rewrite double; pattern (Rabs (An n)) at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; apply Rabs_pos_lt; apply H. intro; unfold Vn; unfold Rdiv; rewrite <- (Rmult_0_r (/ 2)); rewrite <- (Rmult_comm (/ 2)); apply Rmult_lt_compat_l. apply Rinv_0_lt_compat; prove_sup0. apply Rplus_lt_reg_l with (- An n); rewrite Rplus_0_r; unfold Rminus; rewrite (Rplus_comm (- An n)); rewrite Rplus_assoc; rewrite Rplus_opp_r; rewrite Rplus_0_r; apply Rle_lt_trans with (Rabs (An n)). rewrite <- Rabs_Ropp; apply RRle_abs. rewrite double; pattern (Rabs (An n)) at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; apply Rabs_pos_lt; apply H. Defined. Lemma AlembertC3_step1 : forall (An:nat -> R) (x:R), x <> 0 -> (forall n:nat, An n <> 0) -> Un_cv (fun n:nat => Rabs (An (S n) / An n)) 0 -> { l:R | Pser An x l }. Proof. intros; set (Bn := fun i:nat => An i * x ^ i). cut (forall n:nat, Bn n <> 0). intro; cut (Un_cv (fun n:nat => Rabs (Bn (S n) / Bn n)) 0). intro; destruct (Alembert_C2 Bn H2 H3) as (x0,H4). exists x0; unfold Bn in H4; apply tech12; assumption. unfold Un_cv; intros; unfold Un_cv in H1; cut (0 < eps / Rabs x). intro; elim (H1 (eps / Rabs x) H4); intros. exists x0; intros; unfold R_dist; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; rewrite Rabs_Rabsolu; unfold Bn; replace (An (S n) * x ^ S n / (An n * x ^ n)) with (An (S n) / An n * x). rewrite Rabs_mult; apply Rmult_lt_reg_l with (/ Rabs x). apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption. rewrite <- (Rmult_comm (Rabs x)); rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_l; rewrite <- (Rmult_comm eps); unfold Rdiv in H5; replace (Rabs (An (S n) / An n)) with (R_dist (Rabs (An (S n) * / An n)) 0). apply H5; assumption. unfold R_dist; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; rewrite Rabs_Rabsolu; unfold Rdiv; reflexivity. apply Rabs_no_R0; assumption. replace (S n) with (n + 1)%nat; [ idtac | ring ]; rewrite pow_add; unfold Rdiv; rewrite Rinv_mult_distr. replace (An (n + 1)%nat * (x ^ n * x ^ 1) * (/ An n * / x ^ n)) with (An (n + 1)%nat * x ^ 1 * / An n * (x ^ n * / x ^ n)); [ idtac | ring ]; rewrite <- Rinv_r_sym. simpl; ring. apply pow_nonzero; assumption. apply H0. apply pow_nonzero; assumption. unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption ]. intro; unfold Bn; apply prod_neq_R0; [ apply H0 | apply pow_nonzero; assumption ]. Defined. Lemma AlembertC3_step2 : forall (An:nat -> R) (x:R), x = 0 -> { l:R | Pser An x l }. Proof. intros; exists (An 0%nat). unfold Pser; unfold infinite_sum; intros; exists 0%nat; intros; replace (sum_f_R0 (fun n0:nat => An n0 * x ^ n0) n) with (An 0%nat). unfold R_dist; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. induction n as [| n Hrecn]. simpl; ring. rewrite tech5; rewrite Hrecn; [ rewrite H; simpl; ring | unfold ge; apply le_O_n ]. Qed. (** A useful criterion of convergence for power series *) Theorem Alembert_C3 : forall (An:nat -> R) (x:R), (forall n:nat, An n <> 0) -> Un_cv (fun n:nat => Rabs (An (S n) / An n)) 0 -> { l:R | Pser An x l }. Proof. intros; destruct (total_order_T x 0) as [[Hlt|Heq]|Hgt]. cut (x <> 0). intro; apply AlembertC3_step1; assumption. red; intro; rewrite H1 in Hlt; elim (Rlt_irrefl _ Hlt). apply AlembertC3_step2; assumption. cut (x <> 0). intro; apply AlembertC3_step1; assumption. red; intro; rewrite H1 in Hgt; elim (Rlt_irrefl _ Hgt). Defined. Lemma Alembert_C4 : forall (An:nat -> R) (k:R), 0 <= k < 1 -> (forall n:nat, 0 < An n) -> Un_cv (fun n:nat => Rabs (An (S n) / An n)) k -> { l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }. Proof. intros An k Hyp H H0. cut ({ l:R | is_lub (EUn (fun N:nat => sum_f_R0 An N)) l } -> { l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }). intro X; apply X. apply completeness. assert (H1 := tech13 _ _ Hyp H0). elim H1; intros. elim H2; intros. elim H4; intros. unfold bound; exists (sum_f_R0 An x0 + / (1 - x) * An (S x0)). unfold is_upper_bound; intros; unfold EUn in H6. elim H6; intros. rewrite H7. destruct (lt_eq_lt_dec x2 x0) as [[| -> ]|]. replace (sum_f_R0 An x0) with (sum_f_R0 An x2 + sum_f_R0 (fun i:nat => An (S x2 + i)%nat) (x0 - S x2)). pattern (sum_f_R0 An x2) at 1; rewrite <- Rplus_0_r. rewrite Rplus_assoc; apply Rplus_le_compat_l. left; apply Rplus_lt_0_compat. apply tech1. intros; apply H. apply Rmult_lt_0_compat. apply Rinv_0_lt_compat; apply Rplus_lt_reg_l with x; rewrite Rplus_0_r; replace (x + (1 - x)) with 1; [ elim H3; intros; assumption | ring ]. apply H. symmetry ; apply tech2; assumption. pattern (sum_f_R0 An x0) at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l. left; apply Rmult_lt_0_compat. apply Rinv_0_lt_compat; apply Rplus_lt_reg_l with x; rewrite Rplus_0_r; replace (x + (1 - x)) with 1; [ elim H3; intros; assumption | ring ]. apply H. replace (sum_f_R0 An x2) with (sum_f_R0 An x0 + sum_f_R0 (fun i:nat => An (S x0 + i)%nat) (x2 - S x0)). apply Rplus_le_compat_l. cut (sum_f_R0 (fun i:nat => An (S x0 + i)%nat) (x2 - S x0) <= An (S x0) * sum_f_R0 (fun i:nat => x ^ i) (x2 - S x0)). intro; apply Rle_trans with (An (S x0) * sum_f_R0 (fun i:nat => x ^ i) (x2 - S x0)). assumption. rewrite <- (Rmult_comm (An (S x0))); apply Rmult_le_compat_l. left; apply H. rewrite tech3. unfold Rdiv; apply Rmult_le_reg_l with (1 - x). apply Rplus_lt_reg_l with x; rewrite Rplus_0_r. replace (x + (1 - x)) with 1; [ elim H3; intros; assumption | ring ]. do 2 rewrite (Rmult_comm (1 - x)). rewrite Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_r; apply Rplus_le_reg_l with (x ^ S (x2 - S x0)). replace (x ^ S (x2 - S x0) + (1 - x ^ S (x2 - S x0))) with 1; [ idtac | ring ]. rewrite <- (Rplus_comm 1); pattern 1 at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l. left; apply pow_lt. apply Rle_lt_trans with k. elim Hyp; intros; assumption. elim H3; intros; assumption. apply Rminus_eq_contra. red; intro H10. elim H3; intros H11 H12. rewrite H10 in H12; elim (Rlt_irrefl _ H12). red; intro H10. elim H3; intros H11 H12. rewrite H10 in H12; elim (Rlt_irrefl _ H12). replace (An (S x0)) with (An (S x0 + 0)%nat). apply (tech6 (fun i:nat => An (S x0 + i)%nat) x). left; apply Rle_lt_trans with k. elim Hyp; intros; assumption. elim H3; intros; assumption. intro. cut (forall n:nat, (n >= x0)%nat -> An (S n) < x * An n). intro H9. replace (S x0 + S i)%nat with (S (S x0 + i)). apply H9. unfold ge. apply tech8. apply INR_eq; rewrite S_INR; do 2 rewrite plus_INR; do 2 rewrite S_INR; ring. intros. apply Rmult_lt_reg_l with (/ An n). apply Rinv_0_lt_compat; apply H. do 2 rewrite (Rmult_comm (/ An n)). rewrite Rmult_assoc. rewrite <- Rinv_r_sym. rewrite Rmult_1_r. replace (An (S n) * / An n) with (Rabs (An (S n) / An n)). apply H5; assumption. rewrite Rabs_right. unfold Rdiv; reflexivity. left; unfold Rdiv; change (0 < An (S n) * / An n); apply Rmult_lt_0_compat. apply H. apply Rinv_0_lt_compat; apply H. red; intro H10. assert (H11 := H n). rewrite H10 in H11; elim (Rlt_irrefl _ H11). replace (S x0 + 0)%nat with (S x0); [ reflexivity | ring ]. symmetry ; apply tech2; assumption. exists (sum_f_R0 An 0); unfold EUn; exists 0%nat; reflexivity. intros (x,H1). exists x; apply Un_cv_crit_lub; [ unfold Un_growing; intro; rewrite tech5; pattern (sum_f_R0 An n) at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left; apply H | apply H1]. Qed. Lemma Alembert_C5 : forall (An:nat -> R) (k:R), 0 <= k < 1 -> (forall n:nat, An n <> 0) -> Un_cv (fun n:nat => Rabs (An (S n) / An n)) k -> { l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }. Proof. intros. cut ({ l:R | Un_cv (fun N:nat => sum_f_R0 An N) l } -> { l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }). intro Hyp0; apply Hyp0. apply cv_cauchy_2. apply cauchy_abs. apply cv_cauchy_1. cut ({ l:R | Un_cv (fun N:nat => sum_f_R0 (fun i:nat => Rabs (An i)) N) l } -> { l:R | Un_cv (fun N:nat => sum_f_R0 (fun i:nat => Rabs (An i)) N) l }). intro Hyp; apply Hyp. apply (Alembert_C4 (fun i:nat => Rabs (An i)) k). assumption. intro; apply Rabs_pos_lt; apply H0. unfold Un_cv. unfold Un_cv in H1. unfold Rdiv. intros. elim (H1 eps H2); intros. exists x; intros. rewrite <- Rabs_Rinv. rewrite <- Rabs_mult. rewrite Rabs_Rabsolu. unfold Rdiv in H3; apply H3; assumption. apply H0. intro X. elim X; intros. exists x. assumption. intro X. elim X; intros. exists x. assumption. Qed. (** Convergence of power series in D(O,1/k) k=0 is described in Alembert_C3 *) Lemma Alembert_C6 : forall (An:nat -> R) (x k:R), 0 < k -> (forall n:nat, An n <> 0) -> Un_cv (fun n:nat => Rabs (An (S n) / An n)) k -> Rabs x < / k -> { l:R | Pser An x l }. Proof. intros. cut { l:R | Un_cv (fun N:nat => sum_f_R0 (fun i:nat => An i * x ^ i) N) l }. intro X. elim X; intros. exists x0. apply tech12; assumption. destruct (total_order_T x 0) as [[Hlt|Heq]|Hgt]. eapply Alembert_C5 with (k * Rabs x). split. unfold Rdiv; apply Rmult_le_pos. left; assumption. left; apply Rabs_pos_lt. red; intro; rewrite H3 in Hlt; elim (Rlt_irrefl _ Hlt). apply Rmult_lt_reg_l with (/ k). apply Rinv_0_lt_compat; assumption. rewrite <- Rmult_assoc. rewrite <- Rinv_l_sym. rewrite Rmult_1_l. rewrite Rmult_1_r; assumption. red; intro; rewrite H3 in H; elim (Rlt_irrefl _ H). intro; apply prod_neq_R0. apply H0. apply pow_nonzero. red; intro; rewrite H3 in Hlt; elim (Rlt_irrefl _ Hlt). unfold Un_cv; unfold Un_cv in H1. intros. cut (0 < eps / Rabs x). intro. elim (H1 (eps / Rabs x) H4); intros. exists x0. intros. replace (An (S n) * x ^ S n / (An n * x ^ n)) with (An (S n) / An n * x). unfold R_dist. rewrite Rabs_mult. replace (Rabs (An (S n) / An n) * Rabs x - k * Rabs x) with (Rabs x * (Rabs (An (S n) / An n) - k)); [ idtac | ring ]. rewrite Rabs_mult. rewrite Rabs_Rabsolu. apply Rmult_lt_reg_l with (/ Rabs x). apply Rinv_0_lt_compat; apply Rabs_pos_lt. red; intro; rewrite H7 in Hlt; elim (Rlt_irrefl _ Hlt). rewrite <- Rmult_assoc. rewrite <- Rinv_l_sym. rewrite Rmult_1_l. rewrite <- (Rmult_comm eps). unfold R_dist in H5. unfold Rdiv; unfold Rdiv in H5; apply H5; assumption. apply Rabs_no_R0. red; intro; rewrite H7 in Hlt; elim (Rlt_irrefl _ Hlt). unfold Rdiv; replace (S n) with (n + 1)%nat; [ idtac | ring ]. rewrite pow_add. simpl. rewrite Rmult_1_r. rewrite Rinv_mult_distr. replace (An (n + 1)%nat * (x ^ n * x) * (/ An n * / x ^ n)) with (An (n + 1)%nat * / An n * x * (x ^ n * / x ^ n)); [ idtac | ring ]. rewrite <- Rinv_r_sym. rewrite Rmult_1_r; reflexivity. apply pow_nonzero. red; intro; rewrite H7 in Hlt; elim (Rlt_irrefl _ Hlt). apply H0. apply pow_nonzero. red; intro; rewrite H7 in Hlt; elim (Rlt_irrefl _ Hlt). unfold Rdiv; apply Rmult_lt_0_compat. assumption. apply Rinv_0_lt_compat; apply Rabs_pos_lt. red; intro H7; rewrite H7 in Hlt; elim (Rlt_irrefl _ Hlt). exists (An 0%nat). unfold Un_cv. intros. exists 0%nat. intros. unfold R_dist. replace (sum_f_R0 (fun i:nat => An i * x ^ i) n) with (An 0%nat). unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. induction n as [| n Hrecn]. simpl; ring. rewrite tech5. rewrite <- Hrecn. rewrite Heq; simpl; ring. unfold ge; apply le_O_n. eapply Alembert_C5 with (k * Rabs x). split. unfold Rdiv; apply Rmult_le_pos. left; assumption. left; apply Rabs_pos_lt. red; intro; rewrite H3 in Hgt; elim (Rlt_irrefl _ Hgt). apply Rmult_lt_reg_l with (/ k). apply Rinv_0_lt_compat; assumption. rewrite <- Rmult_assoc. rewrite <- Rinv_l_sym. rewrite Rmult_1_l. rewrite Rmult_1_r; assumption. red; intro; rewrite H3 in H; elim (Rlt_irrefl _ H). intro; apply prod_neq_R0. apply H0. apply pow_nonzero. red; intro; rewrite H3 in Hgt; elim (Rlt_irrefl _ Hgt). unfold Un_cv; unfold Un_cv in H1. intros. cut (0 < eps / Rabs x). intro. elim (H1 (eps / Rabs x) H4); intros. exists x0. intros. replace (An (S n) * x ^ S n / (An n * x ^ n)) with (An (S n) / An n * x). unfold R_dist. rewrite Rabs_mult. replace (Rabs (An (S n) / An n) * Rabs x - k * Rabs x) with (Rabs x * (Rabs (An (S n) / An n) - k)); [ idtac | ring ]. rewrite Rabs_mult. rewrite Rabs_Rabsolu. apply Rmult_lt_reg_l with (/ Rabs x). apply Rinv_0_lt_compat; apply Rabs_pos_lt. red; intro; rewrite H7 in Hgt; elim (Rlt_irrefl _ Hgt). rewrite <- Rmult_assoc. rewrite <- Rinv_l_sym. rewrite Rmult_1_l. rewrite <- (Rmult_comm eps). unfold R_dist in H5. unfold Rdiv; unfold Rdiv in H5; apply H5; assumption. apply Rabs_no_R0. red; intro; rewrite H7 in Hgt; elim (Rlt_irrefl _ Hgt). unfold Rdiv; replace (S n) with (n + 1)%nat; [ idtac | ring ]. rewrite pow_add. simpl. rewrite Rmult_1_r. rewrite Rinv_mult_distr. replace (An (n + 1)%nat * (x ^ n * x) * (/ An n * / x ^ n)) with (An (n + 1)%nat * / An n * x * (x ^ n * / x ^ n)); [ idtac | ring ]. rewrite <- Rinv_r_sym. rewrite Rmult_1_r; reflexivity. apply pow_nonzero. red; intro; rewrite H7 in Hgt; elim (Rlt_irrefl _ Hgt). apply H0. apply pow_nonzero. red; intro; rewrite H7 in Hgt; elim (Rlt_irrefl _ Hgt). unfold Rdiv; apply Rmult_lt_0_compat. assumption. apply Rinv_0_lt_compat; apply Rabs_pos_lt. red; intro H7; rewrite H7 in Hgt; elim (Rlt_irrefl _ Hgt). Qed.