(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* 0%R. Proof. intros. now apply not_O_IZR. Qed. Hint Resolve IZR_nz Rmult_integral_contrapositive. Lemma eqR_Qeq : forall x y : Q, Q2R x = Q2R y -> x==y. Proof. unfold Qeq, Q2R; intros (x1, x2) (y1, y2); unfold Qnum, Qden; intros. apply eq_IZR. do 2 rewrite mult_IZR. set (X1 := IZR x1) in *; assert (X2nz := IZR_nz x2); set (X2 := IZR (Zpos x2)) in *. set (Y1 := IZR y1) in *; assert (Y2nz := IZR_nz y2); set (Y2 := IZR (Zpos y2)) in *. assert ((X2 * X1 * / X2)%R = (X2 * (Y1 * / Y2))%R). rewrite <- H; field; auto. rewrite Rinv_r_simpl_m in H0; auto; rewrite H0; field; auto. Qed. Lemma Qeq_eqR : forall x y : Q, x==y -> Q2R x = Q2R y. Proof. unfold Qeq, Q2R; intros (x1, x2) (y1, y2); unfold Qnum, Qden; intros. set (X1 := IZR x1) in *; assert (X2nz := IZR_nz x2); set (X2 := IZR (Zpos x2)) in *. set (Y1 := IZR y1) in *; assert (Y2nz := IZR_nz y2); set (Y2 := IZR (Zpos y2)) in *. assert ((X1 * Y2)%R = (Y1 * X2)%R). unfold X1, X2, Y1, Y2; do 2 rewrite <- mult_IZR. apply IZR_eq; auto. clear H. field_simplify_eq; auto. rewrite H0; ring. Qed. Lemma Rle_Qle : forall x y : Q, (Q2R x <= Q2R y)%R -> x<=y. Proof. unfold Qle, Q2R; intros (x1, x2) (y1, y2); unfold Qnum, Qden; intros. apply le_IZR. do 2 rewrite mult_IZR. set (X1 := IZR x1) in *; assert (X2nz := IZR_nz x2); set (X2 := IZR (Zpos x2)) in *. set (Y1 := IZR y1) in *; assert (Y2nz := IZR_nz y2); set (Y2 := IZR (Zpos y2)) in *. replace (X1 * Y2)%R with (X1 * / X2 * (X2 * Y2))%R; try (field; auto). replace (Y1 * X2)%R with (Y1 * / Y2 * (X2 * Y2))%R; try (field; auto). apply Rmult_le_compat_r; auto. apply Rmult_le_pos. now apply IZR_le. now apply IZR_le. Qed. Lemma Qle_Rle : forall x y : Q, x<=y -> (Q2R x <= Q2R y)%R. Proof. unfold Qle, Q2R; intros (x1, x2) (y1, y2); unfold Qnum, Qden; intros. set (X1 := IZR x1) in *; assert (X2nz := IZR_nz x2); set (X2 := IZR (Zpos x2)) in *. set (Y1 := IZR y1) in *; assert (Y2nz := IZR_nz y2); set (Y2 := IZR (Zpos y2)) in *. assert (X1 * Y2 <= Y1 * X2)%R. unfold X1, X2, Y1, Y2; do 2 rewrite <- mult_IZR. apply IZR_le; auto. clear H. replace (X1 * / X2)%R with (X1 * Y2 * (/ X2 * / Y2))%R; try (field; auto). replace (Y1 * / Y2)%R with (Y1 * X2 * (/ X2 * / Y2))%R; try (field; auto). apply Rmult_le_compat_r; auto. apply Rmult_le_pos; apply Rlt_le; apply Rinv_0_lt_compat. now apply IZR_lt. now apply IZR_lt. Qed. Lemma Rlt_Qlt : forall x y : Q, (Q2R x < Q2R y)%R -> x (Q2R x < Q2R y)%R. Proof. unfold Qlt, Q2R; intros (x1, x2) (y1, y2); unfold Qnum, Qden; intros. set (X1 := IZR x1) in *; assert (X2nz := IZR_nz x2); set (X2 := IZR (Zpos x2)) in *. set (Y1 := IZR y1) in *; assert (Y2nz := IZR_nz y2); set (Y2 := IZR (Zpos y2)) in *. assert (X1 * Y2 < Y1 * X2)%R. unfold X1, X2, Y1, Y2; do 2 rewrite <- mult_IZR. apply IZR_lt; auto. clear H. replace (X1 * / X2)%R with (X1 * Y2 * (/ X2 * / Y2))%R; try (field; auto). replace (Y1 * / Y2)%R with (Y1 * X2 * (/ X2 * / Y2))%R; try (field; auto). apply Rmult_lt_compat_r; auto. apply Rmult_lt_0_compat; apply Rinv_0_lt_compat. now apply IZR_lt. now apply IZR_lt. Qed. Lemma Q2R_plus : forall x y : Q, Q2R (x+y) = (Q2R x + Q2R y)%R. Proof. unfold Qplus, Qeq, Q2R; intros (x1, x2) (y1, y2); unfold Qden, Qnum. simpl_mult. rewrite plus_IZR. do 3 rewrite mult_IZR. field; auto. Qed. Lemma Q2R_mult : forall x y : Q, Q2R (x*y) = (Q2R x * Q2R y)%R. Proof. unfold Qmult, Qeq, Q2R; intros (x1, x2) (y1, y2); unfold Qden, Qnum. simpl_mult. do 2 rewrite mult_IZR. field; auto. Qed. Lemma Q2R_opp : forall x : Q, Q2R (- x) = (- Q2R x)%R. Proof. unfold Qopp, Qeq, Q2R; intros (x1, x2); unfold Qden, Qnum. rewrite Ropp_Ropp_IZR. field; auto. Qed. Lemma Q2R_minus : forall x y : Q, Q2R (x-y) = (Q2R x - Q2R y)%R. Proof. unfold Qminus; intros; rewrite Q2R_plus; rewrite Q2R_opp; auto. Qed. Lemma Q2R_inv : forall x : Q, ~ x==0 -> Q2R (/x) = (/ Q2R x)%R. Proof. unfold Qinv, Q2R, Qeq; intros (x1, x2). case x1; unfold Qnum, Qden. simpl; intros; elim H; trivial. intros; field; auto. intros; change (IZR (Zneg x2)) with (- IZR (Zpos x2))%R; change (IZR (Zneg p)) with (- IZR (Zpos p))%R; simpl; field; (*auto 8 with real.*) repeat split; auto; auto with real. Qed. Lemma Q2R_div : forall x y : Q, ~ y==0 -> Q2R (x/y) = (Q2R x / Q2R y)%R. Proof. unfold Qdiv, Rdiv. intros; rewrite Q2R_mult. rewrite Q2R_inv; auto. Qed. Hint Rewrite Q2R_plus Q2R_mult Q2R_opp Q2R_minus Q2R_inv Q2R_div : q2r_simpl.