(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* 0)%Z -> 0^n == 0. Proof. intros [|n|n] Hn; try (elim Hn; reflexivity); simpl; rewrite Qpower_positive_0; reflexivity. Qed. Lemma Qpower_not_0_positive : forall a n, ~a==0 -> ~Qpower_positive a n == 0. Proof. intros a n X H. apply X; clear X. induction n; simpl in *; try assumption; destruct (Qmult_integral _ _ H); try destruct (Qmult_integral _ _ H0); auto. Qed. Lemma Qpower_pos_positive : forall p n, 0 <= p -> 0 <= Qpower_positive p n. Proof. intros p n Hp. induction n; simpl; repeat apply Qmult_le_0_compat;assumption. Qed. Lemma Qpower_pos : forall p n, 0 <= p -> 0 <= p^n. Proof. intros p [|n|n] Hp; simpl; try discriminate; try apply Qinv_le_0_compat; apply Qpower_pos_positive; assumption. Qed. Lemma Qmult_power_positive : forall a b n, Qpower_positive (a*b) n == (Qpower_positive a n)*(Qpower_positive b n). Proof. induction n; simpl; repeat rewrite IHn; ring. Qed. Lemma Qmult_power : forall a b n, (a*b)^n == a^n*b^n. Proof. intros a b [|n|n]; simpl; try rewrite Qmult_power_positive; try rewrite Qinv_mult_distr; reflexivity. Qed. Lemma Qinv_power_positive : forall a n, Qpower_positive (/a) n == /(Qpower_positive a n). Proof. induction n; simpl; repeat (rewrite IHn || rewrite Qinv_mult_distr); reflexivity. Qed. Lemma Qinv_power : forall a n, (/a)^n == /a^n. Proof. intros a [|n|n]; simpl; try rewrite Qinv_power_positive; reflexivity. Qed. Lemma Qdiv_power : forall a b n, (a/b)^n == (a^n/b^n). Proof. unfold Qdiv. intros a b n. rewrite Qmult_power. rewrite Qinv_power. reflexivity. Qed. Lemma Qinv_power_n : forall n p, (1#p)^n == /(inject_Z (Zpos p))^n. Proof. intros n p. rewrite Qmake_Qdiv. rewrite Qdiv_power. rewrite Qpower_1. unfold Qdiv. ring. Qed. Lemma Qpower_plus_positive : forall a n m, Qpower_positive a (n+m) == (Qpower_positive a n)*(Qpower_positive a m). Proof. intros a n m. unfold Qpower_positive. apply pow_pos_add. apply Q_Setoid. apply Qmult_comp. apply Qmult_assoc. Qed. Lemma Qpower_opp : forall a n, a^(-n) == /a^n. Proof. intros a [|n|n]; simpl; try reflexivity. symmetry; apply Qinv_involutive. Qed. Lemma Qpower_minus_positive : forall a (n m:positive), (m < n)%positive -> Qpower_positive a (n-m)%positive == (Qpower_positive a n)/(Qpower_positive a m). Proof. intros a n m H. destruct (Qeq_dec a 0) as [EQ|NEQ]. - now rewrite EQ, !Qpower_positive_0. - rewrite <- (Qdiv_mult_l (Qpower_positive a (n - m)) (Qpower_positive a m)) by (now apply Qpower_not_0_positive). f_equiv. rewrite <- Qpower_plus_positive. now rewrite Pos.sub_add. Qed. Lemma Qpower_plus : forall a n m, ~a==0 -> a^(n+m) == a^n*a^m. Proof. intros a [|n|n] [|m|m] H; simpl; try ring; try rewrite Qpower_plus_positive; try apply Qinv_mult_distr; try reflexivity; rewrite ?Z.pos_sub_spec; case Pos.compare_spec; intros H0; simpl; subst; try rewrite Qpower_minus_positive; try (field; try split; apply Qpower_not_0_positive); assumption. Qed. Lemma Qpower_plus' : forall a n m, (n+m <> 0)%Z -> a^(n+m) == a^n*a^m. Proof. intros a n m H. destruct (Qeq_dec a 0)as [X|X]. rewrite X. rewrite Qpower_0 by assumption. destruct n; destruct m; try (elim H; reflexivity); simpl; repeat rewrite Qpower_positive_0; ring_simplify; reflexivity. apply Qpower_plus. assumption. Qed. Lemma Qpower_mult_positive : forall a n m, Qpower_positive a (n*m) == Qpower_positive (Qpower_positive a n) m. Proof. intros a n m. induction n using Pos.peano_ind. reflexivity. rewrite Pos.mul_succ_l. rewrite <- Pos.add_1_l. do 2 rewrite Qpower_plus_positive. rewrite IHn. rewrite Qmult_power_positive. reflexivity. Qed. Lemma Qpower_mult : forall a n m, a^(n*m) == (a^n)^m. Proof. intros a [|n|n] [|m|m]; simpl; try rewrite Qpower_positive_1; try rewrite Qpower_mult_positive; try rewrite Qinv_power_positive; try rewrite Qinv_involutive; try reflexivity. Qed. Lemma Zpower_Qpower : forall (a n:Z), (0<=n)%Z -> inject_Z (a^n) == (inject_Z a)^n. Proof. intros a [|n|n] H;[reflexivity| |elim H; reflexivity]. induction n using Pos.peano_ind. replace (a^1)%Z with a by ring. ring. rewrite Pos2Z.inj_succ. unfold Z.succ. rewrite Zpower_exp; auto with *; try discriminate. rewrite Qpower_plus' by discriminate. rewrite <- IHn by discriminate. replace (a^Zpos n*a^1)%Z with (a^Zpos n*a)%Z by ring. ring_simplify. reflexivity. Qed. Lemma Qsqr_nonneg : forall a, 0 <= a^2. Proof. intros a. destruct (Qlt_le_dec 0 a) as [A|A]. apply (Qmult_le_0_compat a a); (apply Qlt_le_weak; assumption). setoid_replace (a^2) with ((-a)*(-a)) by ring. rewrite Qle_minus_iff in A. setoid_replace (0+ - a) with (-a) in A by ring. apply Qmult_le_0_compat; assumption. Qed. Theorem Qpower_decomp p x y : Qpower_positive (x#y) p = x ^ Zpos p # (y ^ p). Proof. induction p; intros; simpl Qpower_positive; rewrite ?IHp. - (* xI *) unfold Qmult, Qnum, Qden. f_equal. + now rewrite <- Z.pow_twice_r, <- Z.pow_succ_r. + apply Pos2Z.inj; rewrite !Pos2Z.inj_mul, !Pos2Z.inj_pow. now rewrite <- Z.pow_twice_r, <- Z.pow_succ_r. - (* xO *) unfold Qmult, Qnum, Qden. f_equal. + now rewrite <- Z.pow_twice_r. + apply Pos2Z.inj; rewrite !Pos2Z.inj_mul, !Pos2Z.inj_pow. now rewrite <- Z.pow_twice_r. - (* xO *) now rewrite Z.pow_1_r, Pos.pow_1_r. Qed.