(* -*- coding: utf-8 -*- *) (************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* ). auto with arith. Qed. (** [Pos.to_nat] is a bijection between [positive] and non-zero [nat], with [Pos.of_nat] as reciprocal. See [Nat2Pos.id] below for the dual equation. *) Theorem id p : of_nat (to_nat p) = p. Proof. induction p using peano_ind. trivial. rewrite inj_succ. rewrite <- IHp at 2. now destruct (is_succ p) as (n,->). Qed. (** [Pos.to_nat] is hence injective *) Lemma inj p q : to_nat p = to_nat q -> p = q. Proof. intros H. now rewrite <- (id p), <- (id q), H. Qed. Lemma inj_iff p q : to_nat p = to_nat q <-> p = q. Proof. split. apply inj. intros; now subst. Qed. (** [Pos.to_nat] is a morphism for comparison *) Lemma inj_compare p q : (p ?= q)%positive = (to_nat p ?= to_nat q). Proof. revert q. induction p as [ |p IH] using peano_ind; intros q. - destruct (succ_pred_or q) as [Hq|Hq]; [now subst|]. rewrite <- Hq, lt_1_succ, inj_succ, inj_1, Nat.compare_succ. symmetry. apply Nat.compare_lt_iff, is_pos. - destruct (succ_pred_or q) as [Hq|Hq]; [subst|]. rewrite compare_antisym, lt_1_succ, inj_succ. simpl. symmetry. apply Nat.compare_gt_iff, is_pos. now rewrite <- Hq, 2 inj_succ, compare_succ_succ, IH. Qed. (** [Pos.to_nat] is a morphism for [lt], [le], etc *) Lemma inj_lt p q : (p < q)%positive <-> to_nat p < to_nat q. Proof. unfold lt. now rewrite inj_compare, Nat.compare_lt_iff. Qed. Lemma inj_le p q : (p <= q)%positive <-> to_nat p <= to_nat q. Proof. unfold le. now rewrite inj_compare, Nat.compare_le_iff. Qed. Lemma inj_gt p q : (p > q)%positive <-> to_nat p > to_nat q. Proof. unfold gt. now rewrite inj_compare, Nat.compare_gt_iff. Qed. Lemma inj_ge p q : (p >= q)%positive <-> to_nat p >= to_nat q. Proof. unfold ge. now rewrite inj_compare, Nat.compare_ge_iff. Qed. (** [Pos.to_nat] is a morphism for subtraction *) Theorem inj_sub p q : (q < p)%positive -> to_nat (p - q) = to_nat p - to_nat q. Proof. intro H. apply Nat.add_cancel_r with (to_nat q). rewrite Nat.sub_add. now rewrite <- inj_add, sub_add. now apply Nat.lt_le_incl, inj_lt. Qed. Theorem inj_sub_max p q : to_nat (p - q) = Nat.max 1 (to_nat p - to_nat q). Proof. destruct (ltb_spec q p). - (* q < p *) rewrite <- inj_sub by trivial. now destruct (is_succ (p - q)) as (m,->). - (* p <= q *) rewrite sub_le by trivial. apply inj_le, Nat.sub_0_le in H. now rewrite H. Qed. Theorem inj_pred p : (1 < p)%positive -> to_nat (pred p) = Nat.pred (to_nat p). Proof. intros. now rewrite <- Pos.sub_1_r, inj_sub, Nat.sub_1_r. Qed. Theorem inj_pred_max p : to_nat (pred p) = Nat.max 1 (Peano.pred (to_nat p)). Proof. rewrite <- Pos.sub_1_r, <- Nat.sub_1_r. apply inj_sub_max. Qed. (** [Pos.to_nat] and other operations *) Lemma inj_min p q : to_nat (min p q) = Nat.min (to_nat p) (to_nat q). Proof. unfold min. rewrite inj_compare. case Nat.compare_spec; intros H; symmetry. - apply Nat.min_l. now rewrite H. - now apply Nat.min_l, Nat.lt_le_incl. - now apply Nat.min_r, Nat.lt_le_incl. Qed. Lemma inj_max p q : to_nat (max p q) = Nat.max (to_nat p) (to_nat q). Proof. unfold max. rewrite inj_compare. case Nat.compare_spec; intros H; symmetry. - apply Nat.max_r. now rewrite H. - now apply Nat.max_r, Nat.lt_le_incl. - now apply Nat.max_l, Nat.lt_le_incl. Qed. Theorem inj_iter : forall p {A} (f:A->A) (x:A), Pos.iter f x p = nat_rect _ x (fun _ => f) (to_nat p). Proof. induction p using peano_ind. - trivial. - intros. rewrite inj_succ, iter_succ. simpl. f_equal. apply IHp. Qed. End Pos2Nat. Module Nat2Pos. (** [Pos.of_nat] is a bijection between non-zero [nat] and [positive], with [Pos.to_nat] as reciprocal. See [Pos2Nat.id] above for the dual equation. *) Theorem id (n:nat) : n<>0 -> Pos.to_nat (Pos.of_nat n) = n. Proof. induction n as [|n H]; trivial. now destruct 1. intros _. simpl Pos.of_nat. destruct n. trivial. rewrite Pos2Nat.inj_succ. f_equal. now apply H. Qed. Theorem id_max (n:nat) : Pos.to_nat (Pos.of_nat n) = max 1 n. Proof. destruct n. trivial. now rewrite id. Qed. (** [Pos.of_nat] is hence injective for non-zero numbers *) Lemma inj (n m : nat) : n<>0 -> m<>0 -> Pos.of_nat n = Pos.of_nat m -> n = m. Proof. intros Hn Hm H. now rewrite <- (id n), <- (id m), H. Qed. Lemma inj_iff (n m : nat) : n<>0 -> m<>0 -> (Pos.of_nat n = Pos.of_nat m <-> n = m). Proof. split. now apply inj. intros; now subst. Qed. (** Usual operations are morphisms with respect to [Pos.of_nat] for non-zero numbers. *) Lemma inj_succ (n:nat) : n<>0 -> Pos.of_nat (S n) = Pos.succ (Pos.of_nat n). Proof. intro H. apply Pos2Nat.inj. now rewrite Pos2Nat.inj_succ, !id. Qed. Lemma inj_pred (n:nat) : Pos.of_nat (pred n) = Pos.pred (Pos.of_nat n). Proof. destruct n as [|[|n]]; trivial. simpl. now rewrite Pos.pred_succ. Qed. Lemma inj_add (n m : nat) : n<>0 -> m<>0 -> Pos.of_nat (n+m) = (Pos.of_nat n + Pos.of_nat m)%positive. Proof. intros Hn Hm. apply Pos2Nat.inj. rewrite Pos2Nat.inj_add, !id; trivial. intros H. destruct n. now destruct Hn. now simpl in H. Qed. Lemma inj_mul (n m : nat) : n<>0 -> m<>0 -> Pos.of_nat (n*m) = (Pos.of_nat n * Pos.of_nat m)%positive. Proof. intros Hn Hm. apply Pos2Nat.inj. rewrite Pos2Nat.inj_mul, !id; trivial. intros H. apply Nat.mul_eq_0 in H. destruct H. now elim Hn. now elim Hm. Qed. Lemma inj_compare (n m : nat) : n<>0 -> m<>0 -> (n ?= m) = (Pos.of_nat n ?= Pos.of_nat m)%positive. Proof. intros Hn Hm. rewrite Pos2Nat.inj_compare, !id; trivial. Qed. Lemma inj_sub (n m : nat) : m<>0 -> Pos.of_nat (n-m) = (Pos.of_nat n - Pos.of_nat m)%positive. Proof. intros Hm. apply Pos2Nat.inj. rewrite Pos2Nat.inj_sub_max. rewrite (id m) by trivial. rewrite !id_max. destruct n, m; trivial. Qed. Lemma inj_min (n m : nat) : Pos.of_nat (min n m) = Pos.min (Pos.of_nat n) (Pos.of_nat m). Proof. destruct n as [|n]. simpl. symmetry. apply Pos.min_l, Pos.le_1_l. destruct m as [|m]. simpl. symmetry. apply Pos.min_r, Pos.le_1_l. unfold Pos.min. rewrite <- inj_compare by easy. case Nat.compare_spec; intros H; f_equal; apply Nat.min_l || apply Nat.min_r. rewrite H; auto. now apply Nat.lt_le_incl. now apply Nat.lt_le_incl. Qed. Lemma inj_max (n m : nat) : Pos.of_nat (max n m) = Pos.max (Pos.of_nat n) (Pos.of_nat m). Proof. destruct n as [|n]. simpl. symmetry. apply Pos.max_r, Pos.le_1_l. destruct m as [|m]. simpl. symmetry. apply Pos.max_l, Pos.le_1_l. unfold Pos.max. rewrite <- inj_compare by easy. case Nat.compare_spec; intros H; f_equal; apply Nat.max_l || apply Nat.max_r. rewrite H; auto. now apply Nat.lt_le_incl. now apply Nat.lt_le_incl. Qed. End Nat2Pos. (**********************************************************************) (** Properties of the shifted injection from Peano natural numbers to binary positive numbers *) Module Pos2SuccNat. (** Composition of [Pos.to_nat] and [Pos.of_succ_nat] is successor on [positive] *) Theorem id_succ p : Pos.of_succ_nat (Pos.to_nat p) = Pos.succ p. Proof. rewrite Pos.of_nat_succ, <- Pos2Nat.inj_succ. apply Pos2Nat.id. Qed. (** Composition of [Pos.to_nat], [Pos.of_succ_nat] and [Pos.pred] is identity on [positive] *) Theorem pred_id p : Pos.pred (Pos.of_succ_nat (Pos.to_nat p)) = p. Proof. now rewrite id_succ, Pos.pred_succ. Qed. End Pos2SuccNat. Module SuccNat2Pos. (** Composition of [Pos.of_succ_nat] and [Pos.to_nat] is successor on [nat] *) Theorem id_succ (n:nat) : Pos.to_nat (Pos.of_succ_nat n) = S n. Proof. rewrite Pos.of_nat_succ. now apply Nat2Pos.id. Qed. Theorem pred_id (n:nat) : pred (Pos.to_nat (Pos.of_succ_nat n)) = n. Proof. now rewrite id_succ. Qed. (** [Pos.of_succ_nat] is hence injective *) Lemma inj (n m : nat) : Pos.of_succ_nat n = Pos.of_succ_nat m -> n = m. Proof. intro H. apply (f_equal Pos.to_nat) in H. rewrite !id_succ in H. now injection H. Qed. Lemma inj_iff (n m : nat) : Pos.of_succ_nat n = Pos.of_succ_nat m <-> n = m. Proof. split. apply inj. intros; now subst. Qed. (** Another formulation *) Theorem inv n p : Pos.to_nat p = S n -> Pos.of_succ_nat n = p. Proof. intros H. apply Pos2Nat.inj. now rewrite id_succ. Qed. (** Successor and comparison are morphisms with respect to [Pos.of_succ_nat] *) Lemma inj_succ n : Pos.of_succ_nat (S n) = Pos.succ (Pos.of_succ_nat n). Proof. apply Pos2Nat.inj. now rewrite Pos2Nat.inj_succ, !id_succ. Qed. Lemma inj_compare n m : (n ?= m) = (Pos.of_succ_nat n ?= Pos.of_succ_nat m)%positive. Proof. rewrite Pos2Nat.inj_compare, !id_succ; trivial. Qed. (** Other operations, for instance [Pos.add] and [plus] aren't directly related this way (we would need to compensate for the successor hidden in [Pos.of_succ_nat] *) End SuccNat2Pos. (** For compatibility, old names and old-style lemmas *) Notation Psucc_S := Pos2Nat.inj_succ (only parsing). Notation Pplus_plus := Pos2Nat.inj_add (only parsing). Notation Pmult_mult := Pos2Nat.inj_mul (only parsing). Notation Pcompare_nat_compare := Pos2Nat.inj_compare (only parsing). Notation nat_of_P_xH := Pos2Nat.inj_1 (only parsing). Notation nat_of_P_xO := Pos2Nat.inj_xO (only parsing). Notation nat_of_P_xI := Pos2Nat.inj_xI (only parsing). Notation nat_of_P_is_S := Pos2Nat.is_succ (only parsing). Notation nat_of_P_pos := Pos2Nat.is_pos (only parsing). Notation nat_of_P_inj_iff := Pos2Nat.inj_iff (only parsing). Notation nat_of_P_inj := Pos2Nat.inj (only parsing). Notation Plt_lt := Pos2Nat.inj_lt (only parsing). Notation Pgt_gt := Pos2Nat.inj_gt (only parsing). Notation Ple_le := Pos2Nat.inj_le (only parsing). Notation Pge_ge := Pos2Nat.inj_ge (only parsing). Notation Pminus_minus := Pos2Nat.inj_sub (only parsing). Notation iter_nat_of_P := @Pos2Nat.inj_iter (only parsing). Notation nat_of_P_of_succ_nat := SuccNat2Pos.id_succ (only parsing). Notation P_of_succ_nat_of_P := Pos2SuccNat.id_succ (only parsing). Notation nat_of_P_succ_morphism := Pos2Nat.inj_succ (only parsing). Notation nat_of_P_plus_morphism := Pos2Nat.inj_add (only parsing). Notation nat_of_P_mult_morphism := Pos2Nat.inj_mul (only parsing). Notation nat_of_P_compare_morphism := Pos2Nat.inj_compare (only parsing). Notation lt_O_nat_of_P := Pos2Nat.is_pos (only parsing). Notation ZL4 := Pos2Nat.is_succ (only parsing). Notation nat_of_P_o_P_of_succ_nat_eq_succ := SuccNat2Pos.id_succ (only parsing). Notation P_of_succ_nat_o_nat_of_P_eq_succ := Pos2SuccNat.id_succ (only parsing). Notation pred_o_P_of_succ_nat_o_nat_of_P_eq_id := Pos2SuccNat.pred_id (only parsing). Lemma nat_of_P_minus_morphism p q : Pos.compare_cont Eq p q = Gt -> Pos.to_nat (p - q) = Pos.to_nat p - Pos.to_nat q. Proof (fun H => Pos2Nat.inj_sub p q (Pos.gt_lt _ _ H)). Lemma nat_of_P_lt_Lt_compare_morphism p q : Pos.compare_cont Eq p q = Lt -> Pos.to_nat p < Pos.to_nat q. Proof (proj1 (Pos2Nat.inj_lt p q)). Lemma nat_of_P_gt_Gt_compare_morphism p q : Pos.compare_cont Eq p q = Gt -> Pos.to_nat p > Pos.to_nat q. Proof (proj1 (Pos2Nat.inj_gt p q)). Lemma nat_of_P_lt_Lt_compare_complement_morphism p q : Pos.to_nat p < Pos.to_nat q -> Pos.compare_cont Eq p q = Lt. Proof (proj2 (Pos2Nat.inj_lt p q)). Definition nat_of_P_gt_Gt_compare_complement_morphism p q : Pos.to_nat p > Pos.to_nat q -> Pos.compare_cont Eq p q = Gt. Proof (proj2 (Pos2Nat.inj_gt p q)). (** Old intermediate results about [Pmult_nat] *) Section ObsoletePmultNat. Lemma Pmult_nat_mult : forall p n, Pmult_nat p n = Pos.to_nat p * n. Proof. induction p; intros n; unfold Pos.to_nat; simpl. f_equal. rewrite 2 IHp. rewrite <- Nat.mul_assoc. f_equal. simpl. now rewrite Nat.add_0_r. rewrite 2 IHp. rewrite <- Nat.mul_assoc. f_equal. simpl. now rewrite Nat.add_0_r. simpl. now rewrite Nat.add_0_r. Qed. Lemma Pmult_nat_succ_morphism : forall p n, Pmult_nat (Pos.succ p) n = n + Pmult_nat p n. Proof. intros. now rewrite !Pmult_nat_mult, Pos2Nat.inj_succ. Qed. Theorem Pmult_nat_l_plus_morphism : forall p q n, Pmult_nat (p + q) n = Pmult_nat p n + Pmult_nat q n. Proof. intros. rewrite !Pmult_nat_mult, Pos2Nat.inj_add. apply Nat.mul_add_distr_r. Qed. Theorem Pmult_nat_plus_carry_morphism : forall p q n, Pmult_nat (Pos.add_carry p q) n = n + Pmult_nat (p + q) n. Proof. intros. now rewrite Pos.add_carry_spec, Pmult_nat_succ_morphism. Qed. Lemma Pmult_nat_r_plus_morphism : forall p n, Pmult_nat p (n + n) = Pmult_nat p n + Pmult_nat p n. Proof. intros. rewrite !Pmult_nat_mult. apply Nat.mul_add_distr_l. Qed. Lemma ZL6 : forall p, Pmult_nat p 2 = Pos.to_nat p + Pos.to_nat p. Proof. intros. rewrite Pmult_nat_mult, Nat.mul_comm. simpl. now rewrite Nat.add_0_r. Qed. Lemma le_Pmult_nat : forall p n, n <= Pmult_nat p n. Proof. intros. rewrite Pmult_nat_mult. apply Nat.le_trans with (1*n). now rewrite Nat.mul_1_l. apply Nat.mul_le_mono_r. apply Pos2Nat.is_pos. Qed. End ObsoletePmultNat.