(* -*- coding: utf-8 -*- *) (************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* (succ p)~0 | p~0 => p~1 | 1 => 1~0 end. (** ** Addition *) Fixpoint add x y := match x, y with | p~1, q~1 => (add_carry p q)~0 | p~1, q~0 => (add p q)~1 | p~1, 1 => (succ p)~0 | p~0, q~1 => (add p q)~1 | p~0, q~0 => (add p q)~0 | p~0, 1 => p~1 | 1, q~1 => (succ q)~0 | 1, q~0 => q~1 | 1, 1 => 1~0 end with add_carry x y := match x, y with | p~1, q~1 => (add_carry p q)~1 | p~1, q~0 => (add_carry p q)~0 | p~1, 1 => (succ p)~1 | p~0, q~1 => (add_carry p q)~0 | p~0, q~0 => (add p q)~1 | p~0, 1 => (succ p)~0 | 1, q~1 => (succ q)~1 | 1, q~0 => (succ q)~0 | 1, 1 => 1~1 end. Infix "+" := add : positive_scope. (** ** Operation [x -> 2*x-1] *) Fixpoint pred_double x := match x with | p~1 => p~0~1 | p~0 => (pred_double p)~1 | 1 => 1 end. (** ** Predecessor *) Definition pred x := match x with | p~1 => p~0 | p~0 => pred_double p | 1 => 1 end. (** ** The predecessor of a positive number can be seen as a [N] *) Definition pred_N x := match x with | p~1 => Npos (p~0) | p~0 => Npos (pred_double p) | 1 => N0 end. (** ** An auxiliary type for subtraction *) Inductive mask : Set := | IsNul : mask | IsPos : positive -> mask | IsNeg : mask. (** ** Operation [x -> 2*x+1] *) Definition succ_double_mask (x:mask) : mask := match x with | IsNul => IsPos 1 | IsNeg => IsNeg | IsPos p => IsPos p~1 end. (** ** Operation [x -> 2*x] *) Definition double_mask (x:mask) : mask := match x with | IsNul => IsNul | IsNeg => IsNeg | IsPos p => IsPos p~0 end. (** ** Operation [x -> 2*x-2] *) Definition double_pred_mask x : mask := match x with | p~1 => IsPos p~0~0 | p~0 => IsPos (pred_double p)~0 | 1 => IsNul end. (** ** Predecessor with mask *) Definition pred_mask (p : mask) : mask := match p with | IsPos 1 => IsNul | IsPos q => IsPos (pred q) | IsNul => IsNeg | IsNeg => IsNeg end. (** ** Subtraction, result as a mask *) Fixpoint sub_mask (x y:positive) {struct y} : mask := match x, y with | p~1, q~1 => double_mask (sub_mask p q) | p~1, q~0 => succ_double_mask (sub_mask p q) | p~1, 1 => IsPos p~0 | p~0, q~1 => succ_double_mask (sub_mask_carry p q) | p~0, q~0 => double_mask (sub_mask p q) | p~0, 1 => IsPos (pred_double p) | 1, 1 => IsNul | 1, _ => IsNeg end with sub_mask_carry (x y:positive) {struct y} : mask := match x, y with | p~1, q~1 => succ_double_mask (sub_mask_carry p q) | p~1, q~0 => double_mask (sub_mask p q) | p~1, 1 => IsPos (pred_double p) | p~0, q~1 => double_mask (sub_mask_carry p q) | p~0, q~0 => succ_double_mask (sub_mask_carry p q) | p~0, 1 => double_pred_mask p | 1, _ => IsNeg end. (** ** Subtraction, result as a positive, returning 1 if [x<=y] *) Definition sub x y := match sub_mask x y with | IsPos z => z | _ => 1 end. Infix "-" := sub : positive_scope. (** ** Multiplication *) Fixpoint mul x y := match x with | p~1 => y + (mul p y)~0 | p~0 => (mul p y)~0 | 1 => y end. Infix "*" := mul : positive_scope. (** ** Iteration over a positive number *) Definition iter {A} (f:A -> A) : A -> positive -> A := fix iter_fix x n := match n with | xH => f x | xO n' => iter_fix (iter_fix x n') n' | xI n' => f (iter_fix (iter_fix x n') n') end. (** ** Power *) Definition pow (x:positive) := iter (mul x) 1. Infix "^" := pow : positive_scope. (** ** Square *) Fixpoint square p := match p with | p~1 => (square p + p)~0~1 | p~0 => (square p)~0~0 | 1 => 1 end. (** ** Division by 2 rounded below but for 1 *) Definition div2 p := match p with | 1 => 1 | p~0 => p | p~1 => p end. (** Division by 2 rounded up *) Definition div2_up p := match p with | 1 => 1 | p~0 => p | p~1 => succ p end. (** ** Number of digits in a positive number *) Fixpoint size_nat p : nat := match p with | 1 => S O | p~1 => S (size_nat p) | p~0 => S (size_nat p) end. (** Same, with positive output *) Fixpoint size p := match p with | 1 => 1 | p~1 => succ (size p) | p~0 => succ (size p) end. (** ** Comparison on binary positive numbers *) Fixpoint compare_cont (r:comparison) (x y:positive) {struct y} : comparison := match x, y with | p~1, q~1 => compare_cont r p q | p~1, q~0 => compare_cont Gt p q | p~1, 1 => Gt | p~0, q~1 => compare_cont Lt p q | p~0, q~0 => compare_cont r p q | p~0, 1 => Gt | 1, q~1 => Lt | 1, q~0 => Lt | 1, 1 => r end. Definition compare := compare_cont Eq. Infix "?=" := compare (at level 70, no associativity) : positive_scope. Definition min p p' := match p ?= p' with | Lt | Eq => p | Gt => p' end. Definition max p p' := match p ?= p' with | Lt | Eq => p' | Gt => p end. (** ** Boolean equality and comparisons *) Fixpoint eqb p q {struct q} := match p, q with | p~1, q~1 => eqb p q | p~0, q~0 => eqb p q | 1, 1 => true | _, _ => false end. Definition leb x y := match x ?= y with Gt => false | _ => true end. Definition ltb x y := match x ?= y with Lt => true | _ => false end. Infix "=?" := eqb (at level 70, no associativity) : positive_scope. Infix "<=?" := leb (at level 70, no associativity) : positive_scope. Infix "positive) p := match p with | (s, IsPos r) => let s' := s~0~1 in let r' := g (f r) in if s' <=? r' then (s~1, sub_mask r' s') else (s~0, IsPos r') | (s,_) => (s~0, sub_mask (g (f 1)) 4) end. Fixpoint sqrtrem p : positive * mask := match p with | 1 => (1,IsNul) | 2 => (1,IsPos 1) | 3 => (1,IsPos 2) | p~0~0 => sqrtrem_step xO xO (sqrtrem p) | p~0~1 => sqrtrem_step xO xI (sqrtrem p) | p~1~0 => sqrtrem_step xI xO (sqrtrem p) | p~1~1 => sqrtrem_step xI xI (sqrtrem p) end. Definition sqrt p := fst (sqrtrem p). (** ** Greatest Common Divisor *) Definition divide p q := exists r, q = r*p. Notation "( p | q )" := (divide p q) (at level 0) : positive_scope. (** Instead of the Euclid algorithm, we use here the Stein binary algorithm, which is faster for this representation. This algorithm is almost structural, but in the last cases we do some recursive calls on subtraction, hence the need for a counter. *) Fixpoint gcdn (n : nat) (a b : positive) : positive := match n with | O => 1 | S n => match a,b with | 1, _ => 1 | _, 1 => 1 | a~0, b~0 => (gcdn n a b)~0 | _ , b~0 => gcdn n a b | a~0, _ => gcdn n a b | a'~1, b'~1 => match a' ?= b' with | Eq => a | Lt => gcdn n (b'-a') a | Gt => gcdn n (a'-b') b end end end. (** We'll show later that we need at most (log2(a.b)) loops *) Definition gcd (a b : positive) := gcdn (size_nat a + size_nat b)%nat a b. (** Generalized Gcd, also computing the division of a and b by the gcd *) Set Printing Universes. Fixpoint ggcdn (n : nat) (a b : positive) : (positive*(positive*positive)) := match n with | O => (1,(a,b)) | S n => match a,b with | 1, _ => (1,(1,b)) | _, 1 => (1,(a,1)) | a~0, b~0 => let (g,p) := ggcdn n a b in (g~0,p) | _, b~0 => let '(g,(aa,bb)) := ggcdn n a b in (g,(aa, bb~0)) | a~0, _ => let '(g,(aa,bb)) := ggcdn n a b in (g,(aa~0, bb)) | a'~1, b'~1 => match a' ?= b' with | Eq => (a,(1,1)) | Lt => let '(g,(ba,aa)) := ggcdn n (b'-a') a in (g,(aa, aa + ba~0)) | Gt => let '(g,(ab,bb)) := ggcdn n (a'-b') b in (g,(bb + ab~0, bb)) end end end. Definition ggcd (a b: positive) := ggcdn (size_nat a + size_nat b)%nat a b. (** Local copies of the not-yet-available [N.double] and [N.succ_double] *) Definition Nsucc_double x := match x with | N0 => Npos 1 | Npos p => Npos p~1 end. Definition Ndouble n := match n with | N0 => N0 | Npos p => Npos p~0 end. (** Operation over bits. *) (** Logical [or] *) Fixpoint lor (p q : positive) : positive := match p, q with | 1, q~0 => q~1 | 1, _ => q | p~0, 1 => p~1 | _, 1 => p | p~0, q~0 => (lor p q)~0 | p~0, q~1 => (lor p q)~1 | p~1, q~0 => (lor p q)~1 | p~1, q~1 => (lor p q)~1 end. (** Logical [and] *) Fixpoint land (p q : positive) : N := match p, q with | 1, q~0 => N0 | 1, _ => Npos 1 | p~0, 1 => N0 | _, 1 => Npos 1 | p~0, q~0 => Ndouble (land p q) | p~0, q~1 => Ndouble (land p q) | p~1, q~0 => Ndouble (land p q) | p~1, q~1 => Nsucc_double (land p q) end. (** Logical [diff] *) Fixpoint ldiff (p q:positive) : N := match p, q with | 1, q~0 => Npos 1 | 1, _ => N0 | _~0, 1 => Npos p | p~1, 1 => Npos (p~0) | p~0, q~0 => Ndouble (ldiff p q) | p~0, q~1 => Ndouble (ldiff p q) | p~1, q~1 => Ndouble (ldiff p q) | p~1, q~0 => Nsucc_double (ldiff p q) end. (** [xor] *) Fixpoint lxor (p q:positive) : N := match p, q with | 1, 1 => N0 | 1, q~0 => Npos (q~1) | 1, q~1 => Npos (q~0) | p~0, 1 => Npos (p~1) | p~0, q~0 => Ndouble (lxor p q) | p~0, q~1 => Nsucc_double (lxor p q) | p~1, 1 => Npos (p~0) | p~1, q~0 => Nsucc_double (lxor p q) | p~1, q~1 => Ndouble (lxor p q) end. (** Shifts. NB: right shift of 1 stays at 1. *) Definition shiftl_nat (p:positive) := nat_rect _ p (fun _ => xO). Definition shiftr_nat (p:positive) := nat_rect _ p (fun _ => div2). Definition shiftl (p:positive)(n:N) := match n with | N0 => p | Npos n => iter xO p n end. Definition shiftr (p:positive)(n:N) := match n with | N0 => p | Npos n => iter div2 p n end. (** Checking whether a particular bit is set or not *) Fixpoint testbit_nat (p:positive) : nat -> bool := match p with | 1 => fun n => match n with | O => true | S _ => false end | p~0 => fun n => match n with | O => false | S n' => testbit_nat p n' end | p~1 => fun n => match n with | O => true | S n' => testbit_nat p n' end end. (** Same, but with index in N *) Fixpoint testbit (p:positive)(n:N) := match p, n with | p~0, N0 => false | _, N0 => true | 1, _ => false | p~0, Npos n => testbit p (pred_N n) | p~1, Npos n => testbit p (pred_N n) end. (** ** From binary positive numbers to Peano natural numbers *) Definition iter_op {A}(op:A->A->A) := fix iter (p:positive)(a:A) : A := match p with | 1 => a | p~0 => iter p (op a a) | p~1 => op a (iter p (op a a)) end. Definition to_nat (x:positive) : nat := iter_op plus x (S O). Arguments to_nat x: simpl never. (** ** From Peano natural numbers to binary positive numbers *) (** A version preserving positive numbers, and sending 0 to 1. *) Fixpoint of_nat (n:nat) : positive := match n with | O => 1 | S O => 1 | S x => succ (of_nat x) end. (* Another version that converts [n] into [n+1] *) Fixpoint of_succ_nat (n:nat) : positive := match n with | O => 1 | S x => succ (of_succ_nat x) end. (** ** Conversion with a decimal representation for printing/parsing *) Local Notation ten := 1~0~1~0. Fixpoint of_uint_acc (d:Decimal.uint)(acc:positive) := match d with | Decimal.Nil => acc | Decimal.D0 l => of_uint_acc l (mul ten acc) | Decimal.D1 l => of_uint_acc l (add 1 (mul ten acc)) | Decimal.D2 l => of_uint_acc l (add 1~0 (mul ten acc)) | Decimal.D3 l => of_uint_acc l (add 1~1 (mul ten acc)) | Decimal.D4 l => of_uint_acc l (add 1~0~0 (mul ten acc)) | Decimal.D5 l => of_uint_acc l (add 1~0~1 (mul ten acc)) | Decimal.D6 l => of_uint_acc l (add 1~1~0 (mul ten acc)) | Decimal.D7 l => of_uint_acc l (add 1~1~1 (mul ten acc)) | Decimal.D8 l => of_uint_acc l (add 1~0~0~0 (mul ten acc)) | Decimal.D9 l => of_uint_acc l (add 1~0~0~1 (mul ten acc)) end. Fixpoint of_uint (d:Decimal.uint) : N := match d with | Decimal.Nil => N0 | Decimal.D0 l => of_uint l | Decimal.D1 l => Npos (of_uint_acc l 1) | Decimal.D2 l => Npos (of_uint_acc l 1~0) | Decimal.D3 l => Npos (of_uint_acc l 1~1) | Decimal.D4 l => Npos (of_uint_acc l 1~0~0) | Decimal.D5 l => Npos (of_uint_acc l 1~0~1) | Decimal.D6 l => Npos (of_uint_acc l 1~1~0) | Decimal.D7 l => Npos (of_uint_acc l 1~1~1) | Decimal.D8 l => Npos (of_uint_acc l 1~0~0~0) | Decimal.D9 l => Npos (of_uint_acc l 1~0~0~1) end. Definition of_int (d:Decimal.int) : option positive := match d with | Decimal.Pos d => match of_uint d with | N0 => None | Npos p => Some p end | Decimal.Neg _ => None end. Fixpoint to_little_uint p := match p with | 1 => Decimal.D1 Decimal.Nil | p~1 => Decimal.Little.succ_double (to_little_uint p) | p~0 => Decimal.Little.double (to_little_uint p) end. Definition to_uint p := Decimal.rev (to_little_uint p). Definition to_int n := Decimal.Pos (to_uint n). End Pos.