Require Export ZPlus. Module Type ZTimesSignature. Declare Module Export ZPlusModule : ZPlusSignature. Open Local Scope IntScope. Parameter Inline times : Z -> Z -> Z. Notation "x * y" := (times x y) : IntScope. Add Morphism times with signature E ==> E ==> E as times_wd. Axiom times_0 : forall n, n * 0 == 0. Axiom times_S : forall n m, n * (S m) == n * m + n. End ZTimesSignature. Module ZTimesProperties (Import ZTimesModule : ZTimesSignature). Module Export ZPlusPropertiesModule := ZPlusProperties ZPlusModule. Open Local Scope IntScope. Theorem times_P : forall n m, n * (P m) == n * m - n. Proof. intros n m. rewrite_S_P m at 2. rewrite times_S. rewrite <- plus_minus_distr. rewrite minus_diag. now rewrite plus_n_0. Qed. Theorem times_0_n : forall n, 0 * n == 0. Proof. induct n. now rewrite times_0. intros n IH. rewrite times_S. rewrite IH; now rewrite plus_0. intros n IH. rewrite times_P. rewrite IH; now rewrite minus_0. Qed. Theorem times_Sn_m : forall n m, (S n) * m == n * m + m. Proof. induct m. do 2 rewrite times_0. now rewrite plus_0. intros m IH. do 2 rewrite times_S. rewrite IH. do 2 rewrite <- plus_assoc. apply plus_wd. reflexivity. do 2 rewrite plus_n_Sm; now rewrite plus_comm. intros m IH. do 2 rewrite times_P. rewrite IH. rewrite <- plus_minus_swap. do 2 rewrite <- plus_minus_distr. apply plus_wd. reflexivity. rewrite minus_S. now rewrite minus_Pn_m. Qed. Theorem times_Pn_m : forall n m, (P n) * m == n * m - m. Proof. intros n m. rewrite_S_P n at 2. rewrite times_Sn_m. rewrite <- plus_minus_distr. rewrite minus_diag; now rewrite plus_n_0. Qed. Theorem times_comm : forall n m, n * m == m * n. Proof. intros n m; induct n. rewrite times_0_n; now rewrite times_0. intros n IH. rewrite times_Sn_m; rewrite times_S; now rewrite IH. intros n IH. rewrite times_Pn_m; rewrite times_P; now rewrite IH. Qed. Theorem times_opp_r : forall n m, n * (- m) == - (n * m). Proof. intros n m; induct m. rewrite uminus_0; rewrite times_0; now rewrite uminus_0. intros m IH. rewrite uminus_S. rewrite times_P; rewrite times_S. rewrite IH. rewrite <- plus_opp_minus; now rewrite opp_plus_distr. intros m IH. rewrite uminus_P. rewrite times_P; rewrite times_S. rewrite IH. now rewrite opp_minus_distr. Qed. Theorem times_opp_l : forall n m, (- n) * m == - (n * m). Proof. intros n m; rewrite (times_comm (- n) m); rewrite (times_comm n m); now rewrite times_opp_r. Qed. Theorem times_opp_opp : forall n m, (- n) * (- m) == n * m. Proof. intros n m. rewrite times_opp_l. rewrite times_opp_r. now rewrite double_opp. Qed. Theorem times_plus_distr_r : forall n m p, n * (m + p) == n * m + n * p. Proof. intros n m p; induct m. rewrite times_0; now do 2 rewrite plus_0. intros m IH. rewrite plus_S. do 2 rewrite times_S. rewrite IH. do 2 rewrite <- plus_assoc; apply plus_wd; [reflexivity | apply plus_comm]. intros m IH. rewrite plus_P. do 2 rewrite times_P. rewrite IH. apply plus_minus_swap. Qed. Theorem times_plus_distr_l : forall n m p, (n + m) * p == n * p + m * p. Proof. intros n m p; rewrite (times_comm (n + m) p); rewrite times_plus_distr_r; rewrite (times_comm p n); now rewrite (times_comm p m). Qed. Theorem times_minus_distr_r : forall n m p, n * (m - p) == n * m - n * p. Proof. intros n m p. do 2 rewrite <- plus_opp_minus. rewrite times_plus_distr_r. now rewrite times_opp_r. Qed. Theorem times_minus_distr_l : forall n m p, (n - m) * p == n * p - m * p. Proof. intros n m p. do 2 rewrite <- plus_opp_minus. rewrite times_plus_distr_l. now rewrite times_opp_l. Qed. Theorem times_assoc : forall n m p, n * (m * p) == (n * m) * p. Proof. intros n m p; induct p. now do 3 rewrite times_0. intros p IH. do 2 rewrite times_S. rewrite times_plus_distr_r. now rewrite IH. intros p IH. do 2 rewrite times_P. rewrite times_minus_distr_r. now rewrite IH. Qed. End ZTimesProperties.