Require Export ZPlusOrder. Module ZTimesOrderPropFunct (Import ZAxiomsMod : ZAxiomsSig). Module Export ZPlusOrderPropMod := ZPlusOrderPropFunct ZAxiomsMod. Open Local Scope NatIntScope. (** Theorems that are true on both natural numbers and integers *) Theorem Ztimes_lt_pred : forall p q n m : Z, S p == q -> (p * n < p * m <-> q * n + m < q * m + n). Proof NZtimes_lt_pred. Theorem Ztimes_lt_mono_pos_l : forall p n m : Z, 0 < p -> (n < m <-> p * n < p * m). Proof NZtimes_lt_mono_pos_l. Theorem Ztimes_lt_mono_pos_r : forall p n m : Z, 0 < p -> (n < m <-> n * p < m * p). Proof NZtimes_lt_mono_pos_r. Theorem Ztimes_lt_mono_neg_l : forall p n m : Z, p < 0 -> (n < m <-> p * m < p * n). Proof NZtimes_lt_mono_neg_l. Theorem Ztimes_lt_mono_neg_r : forall p n m : Z, p < 0 -> (n < m <-> m * p < n * p). Proof NZtimes_lt_mono_neg_r. Theorem Ztimes_le_mono_nonneg_l : forall n m p : Z, 0 <= p -> n <= m -> p * n <= p * m. Proof NZtimes_le_mono_nonneg_l. Theorem Ztimes_le_mono_nonpos_l : forall n m p : Z, p <= 0 -> n <= m -> p * m <= p * n. Proof NZtimes_le_mono_nonpos_l. Theorem Ztimes_le_mono_nonneg_r : forall n m p : Z, 0 <= p -> n <= m -> n * p <= m * p. Proof NZtimes_le_mono_nonneg_r. Theorem Ztimes_le_mono_nonpos_r : forall n m p : Z, p <= 0 -> n <= m -> m * p <= n * p. Proof NZtimes_le_mono_nonpos_r. Theorem Ztimes_cancel_l : forall n m p : Z, p ~= 0 -> (p * n == p * m <-> n == m). Proof NZtimes_cancel_l. Theorem Ztimes_le_mono_pos_l : forall n m p : Z, 0 < p -> (n <= m <-> p * n <= p * m). Proof NZtimes_le_mono_pos_l. Theorem Ztimes_le_mono_pos_r : forall n m p : Z, 0 < p -> (n <= m <-> n * p <= m * p). Proof NZtimes_le_mono_pos_r. Theorem Ztimes_le_mono_neg_l : forall n m p : Z, p < 0 -> (n <= m <-> p * m <= p * n). Proof NZtimes_le_mono_neg_l. Theorem Ztimes_le_mono_neg_r : forall n m p : Z, p < 0 -> (n <= m <-> m * p <= n * p). Proof NZtimes_le_mono_neg_r. Theorem Ztimes_lt_mono : forall n m p q : Z, 0 <= n -> n < m -> 0 <= p -> p < q -> n * p < m * q. Proof NZtimes_lt_mono. Theorem Ztimes_le_mono : forall n m p q : Z, 0 <= n -> n <= m -> 0 <= p -> p <= q -> n * p <= m * q. Proof NZtimes_le_mono. Theorem Ztimes_pos_pos : forall n m : Z, 0 < n -> 0 < m -> 0 < n * m. Proof NZtimes_pos_pos. Theorem Ztimes_nonneg_nonneg : forall n m : Z, 0 <= n -> 0 <= m -> 0 <= n * m. Proof NZtimes_nonneg_nonneg. Theorem Ztimes_neg_neg : forall n m : Z, n < 0 -> m < 0 -> 0 < n * m. Proof NZtimes_neg_neg. Theorem Ztimes_nonpos_nonpos : forall n m : Z, n <= 0 -> m <= 0 -> 0 <= n * m. Proof NZtimes_nonpos_nonpos. Theorem Ztimes_pos_neg : forall n m : Z, 0 < n -> m < 0 -> n * m < 0. Proof NZtimes_pos_neg. Theorem Ztimes_nonneg_nonpos : forall n m : Z, 0 <= n -> m <= 0 -> n * m <= 0. Proof NZtimes_nonneg_nonpos. Theorem Ztimes_neg_pos : forall n m : Z, n < 0 -> 0 < m -> n * m < 0. Proof NZtimes_neg_pos. Theorem Ztimes_nonpos_nonneg : forall n m : Z, n <= 0 -> 0 <= m -> n * m <= 0. Proof NZtimes_nonpos_nonneg. Theorem Ztimes_eq_0 : forall n m : Z, n * m == 0 -> n == 0 \/ m == 0. Proof NZtimes_eq_0. Theorem Ztimes_neq_0 : forall n m : Z, n ~= 0 /\ m ~= 0 <-> n * m ~= 0. Proof NZtimes_neq_0. Theorem Ztimes_pos : forall n m : Z, 0 < n * m <-> (0 < n /\ 0 < m) \/ (m < 0 /\ n < 0). Proof NZtimes_pos. Theorem Ztimes_neg : forall n m : Z, n * m < 0 <-> (n < 0 /\ m > 0) \/ (n > 0 /\ m < 0). Proof NZtimes_neg. Theorem Ztimes_2_mono_l : forall n m : Z, n < m -> 1 + (1 + 1) * n < (1 + 1) * m. Proof NZtimes_2_mono_l. (** Theorems that are either not valid on N or have different proofs on N and Z *) (* None? *) End ZTimesOrderPropFunct.